Supplementary Online Content

eFigure 1. Exemplary characterization of allelic balance at the 3 microsatellite loci IFNA, D9S162 and D9S925 on chromosome 9p

eFigure 2. Exemplary p16 protein expression (upper half) in cutaneous squamous cell carcinoma detected by immunohistochemistry

eTable. Characteristics of microsatellites in this study

This supplementary material has been provided by the authors to give readers additional information about their work.
eFigure 1. Exemplary characterization of allelic balance at the 3 microsatellite loci IFNA, D9S162 and D9S925 on chromosome 9p. In balanced samples (upper half) proportions of the 2 alleles in control tissue (upper line) are similar to proportions of the 2 alleles in the tumor cells (lower line, test DNA) expressed by a high allelic balance ratio. In imbalanced samples (bottom half) due to a loss of one of the 2 alleles in a high number of tumor cells, balance ratio is markedly decreased. The imbalanced samples depicted here were also classified as having LOH as the allelic balance ratios exceeded the LOH threshold values (IFNA 0.85, D9S162 0.70, D9S925 0.75).
eFigure 1

Balanced

Control DNA

Test DNA

Allelic balance ratio 0.88

IFNA

D9S162

D9S925

Imbalanced

Control DNA

Test DNA

Allelic balance ratio 0.58

0.24

0.45
eFigure 2. Exemplary p16 protein expression (upper half) in cutaneous squamous cell carcinoma detected by immunohistochemistry. Monoclonal mouse anti-human p1NK IgG antibody (16P07, NeoMarkers/LabVision Corporation, Fremont, CA, 1:600). Adjacent normal epidermis does not express p16. Original magnification x100 (inset x400) shows nuclear and cytoplasmatic immunostaining pattern of tumor cells. P53 protein expression (bottom half) as detected by immunohistochemistry using monoclonal mouse anti-human IgG (DO-7, Sigma Biosciences, St Louis, MO, USA, 1:100) is also markedly increased in cutaneous squamous cell carcinoma. Nuclear staining pattern. Original magnification x100 (inset x400).
eTable. Characteristics of microsatellites in this study: locus on chromosome 9p, typical size range in base pairs (bp), allelic balance ratio threshold values for LOH, primer sequences used

<table>
<thead>
<tr>
<th>Marker</th>
<th>Locus</th>
<th>Repeat</th>
<th>Size</th>
<th>Sequence up</th>
<th>Sequence down</th>
<th>LOH threshold value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFNA</td>
<td>9p22</td>
<td>di-</td>
<td>110-135</td>
<td>GTAAGGTGGAAACCCCCC</td>
<td>TGCACGGTTAAGTAAATTGG</td>
<td>0.85</td>
</tr>
<tr>
<td>D9S162</td>
<td>9p22.1</td>
<td>di-</td>
<td>150-200</td>
<td>CCAGAGAAACAGAACC</td>
<td>ACAACAAATCTCTCCTCAC</td>
<td>0.70</td>
</tr>
<tr>
<td>D9S925</td>
<td>9p22.2</td>
<td>tetra-</td>
<td>170-200</td>
<td>TGTGAGCCAAGGCCCTATAG</td>
<td>GTCTGGGTTCTCCCAAGAAAA</td>
<td>0.75</td>
</tr>
</tbody>
</table>