Supplementary Online Content

eTable 1. Study Characteristics and Extracted Data

eTable 2. New Castle-Ottawa Scoring

eFigure 1. New Castle-Ottawa Scoring

eFigure 2. Funnel Plot for Studies on the Association between B-HPV type 5 only and cSCC

eFigure 3. Funnel Plot for Studies on the Association between B-HPV type 8 only and cSCC

eFigure 4. Funnel Plot for Studies on the Association between B-HPV type 15 only and cSCC

eFigure 5. Funnel Plot for Studies on the Association between B-HPV type 17 only and cSCC

eFigure 6. Funnel Plot for Studies on the Association between B-HPV type 20 only and cSCC

eFigure 7. Funnel Plot for Studies on the Association between B-HPV type 24 only and cSCC

eFigure 8. Funnel Plot for Studies on the Association between B-HPV type 36 only and cSCC

eFigure 9. Funnel Plot for Studies on the Association between B-HPV type 38 only and cSCC

eFigure 10. Funnel Plot for Studies on the Association between B-HPV and cSCC: Seroprevalence subgroup

eFigure 11. Funnel Plot for Studies on the Association between B-HPV types only and cSCC: Seroprevalence subgroup

eFigure 12. Funnel Plot for Studies on the Association between B-HPV type 5 only and cSCC: Seroprevalence subgroup

eFigure 13. Funnel Plot for Studies on the Association between B-HPV type 8 only and cSCC: Seroprevalence subgroup

eFigure 14. Funnel Plot for Studies on the Association between B-HPV type 15 only and cSCC: Seroprevalence subgroup

eFigure 15. Funnel Plot for Studies on the Association between B-HPV type 17 only and cSCC: Seroprevalence subgroup

eFigure 16. Funnel Plot for Studies on the Association between B-HPV type 20 only and cSCC: Seroprevalence subgroup

eFigure 17. Funnel Plot for Studies on the Association between B-HPV type 24 only and cSCC: Seroprevalence subgroup

eFigure 18. Funnel Plot for Studies on the Association between B-HPV type 36 only and cSCC: Seroprevalence subgroup

eFigure 19. Funnel Plot for Studies on the Association between B-HPV type 38 only and cSCC: Seroprevalence subgroup

eFigure 20. Funnel Plot for Studies on the Association between reported B-HPV and cSCC: Seroprevalence subgroup using ELISA only

eFigure 21. Funnel Plot for Studies on the Association between reported B-HPV and cSCC: Seroprevalence subgroup excluding studies using ELISA
This supplementary material has been provided by the authors to give readers additional information about their work.
Online-Only Supplements

eTable 1 – Study Characteristics and Extracted Data

eTable 2 – New Castle-Ottawa Scoring

eFigure 1 – Funnel Plot for Studies on the Association between B-HPV types only and cSCC

eFigure 2 – Funnel Plot for Studies on the Association between B-HPV type 5 only and cSCC

eFigure 3 – Funnel Plot for Studies on the Association between B-HPV type 8 only and cSCC

eFigure 4 – Funnel Plot for Studies on the Association between B-HPV type 15 only and cSCC

eFigure 5 – Funnel Plot for Studies on the Association between B-HPV type 17 only and cSCC

eFigure 6 – Funnel Plot for Studies on the Association between B-HPV type 20 only and cSCC

eFigure 7 – Funnel Plot for Studies on the Association between B-HPV type 24 only and cSCC

eFigure 8 – Funnel Plot for Studies on the Association between B-HPV type 36 only and cSCC

eFigure 9 – Funnel Plot for Studies on the Association between B-HPV type 38 only and cSCC

eFigure 10 – Funnel Plot for Studies on the Association between B-HPV and cSCC: Seroprevalence subgroup

eFigure 11 – Funnel Plot for Studies on the Association between B-HPV types only and cSCC: Seroprevalence subgroup

eFigure 12 – Funnel Plot for Studies on the Association between B-HPV type 5 only and cSCC: Seroprevalence subgroup

eFigure 13 – Funnel Plot for Studies on the Association between B-HPV type 8 only and cSCC: Seroprevalence subgroup

eFigure 14 – Funnel Plot for Studies on the Association between B-HPV type 15 only and cSCC: Seroprevalence subgroup

eFigure 15 – Funnel Plot for Studies on the Association between B-HPV type 17 only and cSCC: Seroprevalence subgroup

eFigure 16 – Funnel Plot for Studies on the Association between B-HPV type 20 only and cSCC: Seroprevalence subgroup

eFigure 17 – Funnel Plot for Studies on the Association between B-HPV type 24 only and cSCC: Seroprevalence subgroup

eFigure 18 – Funnel Plot for Studies on the Association between B-HPV type 36 only and cSCC: Seroprevalence subgroup

eFigure 19 – Funnel Plot for Studies on the Association between B-HPV type 38 only and cSCC: Seroprevalence subgroup

© 2015 American Medical Association. All rights reserved.
eFigure 20 – Funnel Plot for Studies on the Association between reported B-HPV and cSCC: Seroprevalence subgroup using ELISA only

eFigure 21 – Funnel Plot for Studies on the Association between reported B-HPV and cSCC: Seroprevalence subgroup excluding studies using ELISA
eTable 1 – Additional Study Characteristics and Extracted Data

<table>
<thead>
<tr>
<th>Author, year</th>
<th>OR</th>
<th>Low CI Limit</th>
<th>High CI Limit</th>
<th>Method</th>
<th>HPV Type</th>
<th>Cases Negative</th>
<th>Cases Positive</th>
<th>Control Negatives</th>
<th>Control Positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masini, 2003</td>
<td>3.2</td>
<td>1.3</td>
<td>7.9</td>
<td>Seroprevalence</td>
<td>8</td>
<td>20</td>
<td>26</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.2</td>
<td>0.9</td>
<td></td>
<td>15</td>
<td>30</td>
<td>49</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>0.8</td>
<td>10</td>
<td></td>
<td>36</td>
<td>37</td>
<td>9</td>
<td>77</td>
<td>7</td>
</tr>
<tr>
<td>Feltkamp, 2003</td>
<td>2.6</td>
<td>0.2</td>
<td>31.9</td>
<td>Seroprevalence</td>
<td>5</td>
<td>158</td>
<td>2</td>
<td>332</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>14.7</td>
<td>1.6</td>
<td>135</td>
<td></td>
<td>8</td>
<td>153</td>
<td>7</td>
<td>332</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.4</td>
<td>3.6</td>
<td></td>
<td>15</td>
<td>153</td>
<td>7</td>
<td>326</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>0.75</td>
<td>6.7</td>
<td></td>
<td>20</td>
<td>152</td>
<td>8</td>
<td>326</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.75</td>
<td>2.9</td>
<td></td>
<td>24</td>
<td>139</td>
<td>21</td>
<td>311</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.1</td>
<td>8.4</td>
<td></td>
<td>38</td>
<td>151</td>
<td>9</td>
<td>324</td>
<td>9</td>
</tr>
<tr>
<td>Karagas, 2006</td>
<td>1.5</td>
<td>1</td>
<td>2.1</td>
<td>Seroprevalence</td>
<td>genus Beta</td>
<td>170</td>
<td>82</td>
<td>347</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>1</td>
<td>3.1</td>
<td></td>
<td>5</td>
<td>224</td>
<td>28</td>
<td>430</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.8</td>
<td>1.8</td>
<td></td>
<td>8</td>
<td>211</td>
<td>41</td>
<td>393</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>0.8</td>
<td>2.3</td>
<td></td>
<td>15</td>
<td>226</td>
<td>26</td>
<td>420</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>0.9</td>
<td>3</td>
<td></td>
<td>20</td>
<td>227</td>
<td>25</td>
<td>433</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.6</td>
<td>2.2</td>
<td></td>
<td>24</td>
<td>234</td>
<td>18</td>
<td>432</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.4</td>
<td>1.8</td>
<td></td>
<td>36</td>
<td>241</td>
<td>11</td>
<td>435</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>0.8</td>
<td>2.1</td>
<td></td>
<td>38</td>
<td>218</td>
<td>34</td>
<td>411</td>
<td>50</td>
</tr>
<tr>
<td>Casabonne, 2007</td>
<td>0.6</td>
<td>0.1</td>
<td>1.8</td>
<td>Seroprevalence</td>
<td>5</td>
<td>34</td>
<td>5</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.4</td>
<td>3</td>
<td></td>
<td>8</td>
<td>30</td>
<td>9</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.1</td>
<td>1.7</td>
<td></td>
<td>15</td>
<td>35</td>
<td>4</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>0.5</td>
<td>4.2</td>
<td></td>
<td>17</td>
<td>31</td>
<td>8</td>
<td>68</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.4</td>
<td>2.9</td>
<td></td>
<td>20</td>
<td>30</td>
<td>9</td>
<td>63</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.1</td>
<td>1.7</td>
<td></td>
<td>24</td>
<td>34</td>
<td>5</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.2</td>
<td>2.7</td>
<td></td>
<td>36</td>
<td>33</td>
<td>6</td>
<td>67</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.5</td>
<td>4.2</td>
<td></td>
<td>38</td>
<td>29</td>
<td>10</td>
<td>66</td>
<td>14</td>
</tr>
<tr>
<td>Waterboer, 2008</td>
<td>3.3</td>
<td>1.2</td>
<td>8.7</td>
<td>Seroprevalence</td>
<td>genus Beta</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.2</td>
<td>1.7</td>
<td></td>
<td>5</td>
<td>31</td>
<td>12</td>
<td>55</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.5</td>
<td>2.8</td>
<td></td>
<td>8</td>
<td>27</td>
<td>16</td>
<td>64</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>1.1</td>
<td>7.1</td>
<td></td>
<td>15</td>
<td>25</td>
<td>18</td>
<td>58</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1.01</td>
<td>6.5</td>
<td></td>
<td>17</td>
<td>23</td>
<td>20</td>
<td>56</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.4</td>
<td>2.4</td>
<td></td>
<td>20</td>
<td>30</td>
<td>13</td>
<td>54</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>0.6</td>
<td>3.4</td>
<td></td>
<td>24</td>
<td>27</td>
<td>16</td>
<td>56</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.6</td>
<td>4.1</td>
<td></td>
<td>36</td>
<td>29</td>
<td>14</td>
<td>58</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.2</td>
<td>7.9</td>
<td></td>
<td>38</td>
<td>22</td>
<td>21</td>
<td>56</td>
<td>21</td>
</tr>
<tr>
<td>Bouwes Bavinck, 2010</td>
<td>2.04</td>
<td>1.490</td>
<td>2.806</td>
<td>Seroprevalence</td>
<td>5</td>
<td>536</td>
<td>109</td>
<td>734</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>1.68</td>
<td>1.349</td>
<td>2.095</td>
<td></td>
<td>8</td>
<td>390</td>
<td>255</td>
<td>581</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>1.47</td>
<td>1.169</td>
<td>1.869</td>
<td></td>
<td>15</td>
<td>449</td>
<td>196</td>
<td>623</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>1.51</td>
<td>1.199</td>
<td>1.908</td>
<td></td>
<td>17</td>
<td>440</td>
<td>205</td>
<td>617</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>1.70</td>
<td>1.288</td>
<td>2.267</td>
<td></td>
<td>20</td>
<td>516</td>
<td>129</td>
<td>704</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>1.57</td>
<td>1.201</td>
<td>2.051</td>
<td></td>
<td>24</td>
<td>503</td>
<td>142</td>
<td>684</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>1.70</td>
<td>1.248</td>
<td>2.335</td>
<td></td>
<td>36</td>
<td>543</td>
<td>102</td>
<td>727</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>1.82</td>
<td>1.455</td>
<td>2.283</td>
<td></td>
<td>38</td>
<td>402</td>
<td>243</td>
<td>606</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>1.27</td>
<td>1.016</td>
<td>1.609</td>
<td>EBH DNA</td>
<td>5</td>
<td>479</td>
<td>196</td>
<td>628</td>
<td>201</td>
</tr>
<tr>
<td>Author, year</td>
<td>OR</td>
<td>Low CI Limit</td>
<td>High CI Limit</td>
<td>Method</td>
<td>HPV Type</td>
<td>Cases Negative</td>
<td>Cases Positive</td>
<td>Control Negatives</td>
<td>Control Positives</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>--------------</td>
<td>---------------</td>
<td>--------</td>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Karagas, 2010</td>
<td>1.3</td>
<td>1.04</td>
<td>1.61</td>
<td>Seroprevalence genus Beta</td>
<td>5</td>
<td>620</td>
<td>43</td>
<td>764</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>0.9</td>
<td>2.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.08</td>
<td>1.08</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1.02</td>
<td>1.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.08</td>
<td>1.08</td>
<td>1.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.07</td>
<td>1.07</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>0.99</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.27</td>
<td>1.27</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasmeijer, 2011</td>
<td>1</td>
<td>0.7</td>
<td>1.4</td>
<td>Seroprevalence genus Beta</td>
<td>5</td>
<td>136</td>
<td>14</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.8</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.5</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.4</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersson, 2012</td>
<td>1.3</td>
<td>1.1</td>
<td>1.7</td>
<td>Seroprevalence genus Beta</td>
<td>5</td>
<td>565</td>
<td>68</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.8</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.9</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.9</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.8</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Struijk, 2006</td>
<td>3.9</td>
<td>1.4</td>
<td>10.7</td>
<td>Seroprevalence genus</td>
<td>34</td>
<td>20</td>
<td>45</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Author, year</td>
<td>OR</td>
<td>Low CI Limit</td>
<td>High CI Limit</td>
<td>Method</td>
<td>HPV Type</td>
<td>Cases Negative</td>
<td>Cases Positive</td>
<td>Control Negative</td>
<td>Control Positive</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>--------------</td>
<td>---------------</td>
<td>--------</td>
<td>----------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Termorshuizen, 2004</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>EBH DNA</td>
<td>genus Beta</td>
<td>45</td>
<td>111</td>
<td>146</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>9</td>
<td>1.9</td>
<td>M</td>
<td>M</td>
<td>5</td>
<td>119</td>
<td>37</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>2.0</td>
<td>M</td>
<td>8</td>
<td>129</td>
<td>27</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>8</td>
<td>1.5</td>
<td>M</td>
<td>M</td>
<td>15</td>
<td>130</td>
<td>26</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Seroprevalence</td>
<td>genus Beta</td>
<td>20</td>
<td>105</td>
<td>51</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>9</td>
<td>1.9</td>
<td>M</td>
<td>M</td>
<td>5</td>
<td>154</td>
<td>2</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>EBH DNA</td>
<td>genus Beta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>M</td>
<td>8</td>
<td>151</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>8</td>
<td>M</td>
<td>15</td>
<td>150</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>8</td>
<td>M</td>
<td>20</td>
<td>149</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iannacone, 2013</td>
<td>1.6</td>
<td>8</td>
<td>0.88</td>
<td>3.19</td>
<td>EBH DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>9</td>
<td>0.66</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>9</td>
<td>0.55</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>4</td>
<td>0.35</td>
<td>2.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>3</td>
<td>0.67</td>
<td>2.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>3</td>
<td>0.53</td>
<td>3.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1</td>
<td>0.58</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>6</td>
<td>0.26</td>
<td>1.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>4</td>
<td>1.04</td>
<td>3.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1</td>
<td>0.58</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>6</td>
<td>0.26</td>
<td>1.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>4</td>
<td>1.04</td>
<td>3.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1</td>
<td>0.58</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>6</td>
<td>0.26</td>
<td>1.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>4</td>
<td>1.04</td>
<td>3.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EBH: Eyebrow Hair
eTable 2 – New Castle-Ottawa Scoring for Studies Meeting Search Inclusion Criteria

<table>
<thead>
<tr>
<th>Study</th>
<th>Subject Selection Max 4</th>
<th>Study Comparability Max 2</th>
<th>Assessment of Outcomes Max 3</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Mancini, 2003</td>
<td>****</td>
<td>**</td>
<td>***</td>
<td>7</td>
</tr>
<tr>
<td>2- Feltkamp, 2003</td>
<td>****</td>
<td>*</td>
<td>***</td>
<td>6</td>
</tr>
<tr>
<td>3-Karagas, 2006</td>
<td>*****</td>
<td>**</td>
<td>****</td>
<td>9</td>
</tr>
<tr>
<td>4- Casabone, 2007</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>8</td>
</tr>
<tr>
<td>5-Waterboer, 2008</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>8</td>
</tr>
<tr>
<td>6- Bouwes Bavinck, 2010</td>
<td>*****</td>
<td>**</td>
<td>****</td>
<td>9</td>
</tr>
<tr>
<td>7- Karagas, 2010</td>
<td>*****</td>
<td>**</td>
<td>****</td>
<td>9</td>
</tr>
<tr>
<td>8-Plasmeijer, 2011</td>
<td>*****</td>
<td>*</td>
<td>****</td>
<td>8</td>
</tr>
<tr>
<td>9-Andersson, 2012</td>
<td>*****</td>
<td>**</td>
<td>****</td>
<td>9</td>
</tr>
<tr>
<td>10- Struijk, 2006</td>
<td>*****</td>
<td>*</td>
<td>***</td>
<td>7</td>
</tr>
<tr>
<td>11- Iannacone, 2012</td>
<td>*****</td>
<td>*</td>
<td>****</td>
<td>8</td>
</tr>
<tr>
<td>12- Struijk, 2003</td>
<td>*****</td>
<td>*</td>
<td>**</td>
<td>7</td>
</tr>
<tr>
<td>13- Termorshuizen, 2004</td>
<td>****</td>
<td>*</td>
<td>***</td>
<td>6</td>
</tr>
<tr>
<td>14- Iannacone, 2014</td>
<td>*****</td>
<td>**</td>
<td>***</td>
<td>8</td>
</tr>
</tbody>
</table>
eFigure 1 – Funnel Plot for Studies on the Association between B-HPV types only and cSCC

Funnel Plot for Type genus beta
(Egger test: P=0.11, Begg test: P=0.04, TrimFill: No.Missing=2)

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 2 – Funnel Plot for Studies on the Association between B-HPV type 5 only and cSCC

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 3 – Funnel Plot for Studies on the Association between B-HPV type 8 only and cSCC

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.

Funnel Plot for Type 8
(Egger test: P=0.18, Begg test: P=0.28, TrimFill: No.Missing=1)
The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 5 – Funnel Plot for Studies on the Association between B-HPV type 17 only and cSCC

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs
eFigure 6 – Funnel Plot for Studies on the Association between B-HPV type 20 only and cSCC

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 7 – Funnel Plot for Studies on the Association between B-HPV type 24 only and cSCC

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 8 – Funnel Plot for Studies on the Association between B-HPV type 36 only and cSCC

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 9 – Funnel Plot for Studies on the Association between B-HPV type 38 only and cSCC

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 10 – Funnel Plot for Studies on the Association between B-HPV and cSCC: Seroprevalence subgroup

Funnel Plot for All 81 Sero-prevalence Datasets
(Egger test: P=0.71, Begg test: P=0.49, TrimFill: No.Missing=5)

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 11 – Funnel Plot for Studies on the Association between B-HPV types only and cSCC: Seroprevalence subgroup

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 12 – Funnel Plot for Studies on the Association between B-HPV type 5 only and cSCC: Seroprevalence subgroup

Funnel Plot for Type 6 (Seroprevalence)
(Egger test: P=0.2, Begg test: P=0.48, TrimFill: No.Missing=1)

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 13 – Funnel Plot for Studies on the Association between B-HPV type 8 only and cSCC: Seroprevalence subgroup

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 14 – Funnel Plot for Studies on the Association between B-HPV type 15 only and cSCC: Seroprevalence subgroup

Funnel Plot for Type 15 (Sero-prevalence)
(Egger test: P=0.84, Begg test: P=0.54, TrimFill: No.Missing=0)

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs
The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 16 – Funnel Plot for Studies on the Association between B-HPV type 20 only and cSCC: Seroprevalence subgroup

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.

Funnel Plot for Type 20 (Sero-prevalence)
(Egger test: P=0.48, Begg test: P=0.92, TrimFill: No.Missing=0)

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 17 – Funnel Plot for Studies on the Association between B-HPV type 24 only and cSCC: Seroprevalence subgroup

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs

Funnel Plot for Type 24 (Sero-prevalence)
(Egger test: P=0.63, Begg test: P=0.6, TrimFill: No.Missing=0)
eFigure 18 – Funnel Plot for Studies on the Association between B-HPV type 36 only and cSCC: Seroprevalence subgroup

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 19 – Funnel Plot for Studies on the Association between B-HPV type 38 only and cSCC: Seroprevalence subgroup

Funnel Plot for Type 38 (Sero-prevalence)
(Egger test: P=0.98, Begg test: P=0.92, TrimFill: No.Missing=2)

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.
eFigure 20 – Funnel Plot for Studies on the Association between reported B-HPV and cSCC: Seroprevalence subgroup using ELISA only

Funnel Plot for ELISA Datasets
(Egger test: P=0.03, Begg test: P=0.25, TrimFill: No.Missing=5)

The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs
The vertical solid line represents the summary effect estimates, and the dotted lines are pseudo 95% CIs.