Supplementary Online Content

eFigure. Example of Prescription Feedback

eTable 1. Intention To Treat Analysis

eTable 2. On-intervention/Per-Protocol Analysis

eTable 3. Subgroup and Sensitivity Analyses

eAppendix. Search strategy for “Research in Context”

This supplementary material has been provided by the authors to give readers additional information about their work.
eFigure: Example of Prescription Feedback

A] Year 1

B] Year 2
eTable 1: Intention To Treat Analysis

<table>
<thead>
<tr>
<th>Prescriptions per year (DDD/100c, all antibiotic types)</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Change from Baseline (between-group difference)</th>
<th>p-value</th>
<th>Change from Baseline (between-group difference)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention group physicians (n=1406)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group physicians (n=1408)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>90.46 (71.22, 119.08)</td>
<td>90.32 (71.81, 121.22)</td>
<td>0.81% (-2.56%, 4.30%)</td>
<td>0.64</td>
<td>91.03 (70.26, 121.69)</td>
<td>0.66</td>
</tr>
<tr>
<td>≤ 5 years</td>
<td>89.48 (47.66, 166.67)</td>
<td>82.94 (48.66, 164.71)</td>
<td>1.53% (-1.93%, 13.77%)</td>
<td>0.79</td>
<td>80 (46.65, 156.07)</td>
<td>0.04</td>
</tr>
<tr>
<td>≥ 6 - 18 years</td>
<td>97.15 (60.42, 156.86)</td>
<td>105 (65.79, 164.21)</td>
<td>-8.61% (-14.87%, -1.90%)</td>
<td>0.01</td>
<td>101.51 (63.26, 163.72)</td>
<td>0.12</td>
</tr>
<tr>
<td>19 - 65 years</td>
<td>94.39 (73.14, 126.85)</td>
<td>95.36 (71.50, 129.17)</td>
<td>-0.17% (-3.58%, 3.36%)</td>
<td>0.93</td>
<td>92.8 (68.78, 128.02)</td>
<td>0.26</td>
</tr>
<tr>
<td>> 65 years</td>
<td>81.43 (62.07, 113.21)</td>
<td>80.29 (60.26, 113.69)</td>
<td>1.13% (-2.75%, 5.16%)</td>
<td>0.57</td>
<td>83.69 (61.39, 118.64)</td>
<td>0.19</td>
</tr>
<tr>
<td>Women</td>
<td>93.32 (71.86, 124.49)</td>
<td>91.44 (70.37, 126.24)</td>
<td>1.45% (-2.07%, 5.09%)</td>
<td>0.42</td>
<td>93.31 (71.13, 129.59)</td>
<td>0.19</td>
</tr>
<tr>
<td>Men</td>
<td>86.21 (63.84, 115.39)</td>
<td>86.65 (65.30, 119.32)</td>
<td>-1.37% (-5.02%, 2.42%)</td>
<td>0.47</td>
<td>85.82 (62.91, 118.45)</td>
<td>0.28</td>
</tr>
<tr>
<td>Penicillins (beta-Lactams)</td>
<td>37.59 (26.50, 50.60)</td>
<td>36.64 (25.89, 50.71)</td>
<td>1.42% (-2.65%, 5.65%)</td>
<td>0.5</td>
<td>37.84 (26.74, 53.75)</td>
<td>0.59</td>
</tr>
<tr>
<td>Other beta-Lactams</td>
<td>6.58 (2.35, 15.82)</td>
<td>6.87 (2.43, 16.53)</td>
<td>-0.04% (-7.80%, 8.37%)</td>
<td>0.99</td>
<td>6.22 (2.15, 16.09)</td>
<td>0.95</td>
</tr>
<tr>
<td>Quinolones</td>
<td>16.24 (10.96, 23.90)</td>
<td>15.48 (10.17, 22.98)</td>
<td>-0.82% (-5.42%, 4.00%)</td>
<td>0.73</td>
<td>15.12 (9.57, 23.34)</td>
<td>0.66</td>
</tr>
<tr>
<td>Macrolides, Lincosamides, StGr</td>
<td>11.8 (6.76, 19.09)</td>
<td>12.41 (6.96, 20.97)</td>
<td>-1.39% (-6.88%, 4.07%)</td>
<td>0.61</td>
<td>12.48 (7.03, 21.35)</td>
<td>0.53</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>4.91 (2.46, 9.64)</td>
<td>5.08 (2.28, 9.56)</td>
<td>4.77% (-3.78%, 14.08%)</td>
<td>0.28</td>
<td>5.05 (2.50, 9.51)</td>
<td>0.58</td>
</tr>
<tr>
<td>Sulfonamides/Trimethoprim</td>
<td>2.12 (0.88, 4.39)</td>
<td>2.02 (0.85, 4.49)</td>
<td>5.68% (-4.29%, 16.70%)</td>
<td>0.27</td>
<td>1.95 (0.76, 4.34)</td>
<td>0.35</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>0.09 (0.02, 0.96)</td>
<td>3.21 (0.64, 4.80)</td>
<td>12.89% (-6.41%, 25.50%)</td>
<td>0.83</td>
<td>0.17 (0.05, 3.11)</td>
<td>0.01</td>
</tr>
<tr>
<td>Other</td>
<td>2.81 (1.09, 7.80)</td>
<td>2.92 (1.08, 7.78)</td>
<td>0.31% (-3.86%, 4.04%)</td>
<td>0.95</td>
<td>3.44 (1.13, 8.81)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Median (interquartile range) if not stated otherwise. DDD: Defined daily doses. DDD/100c: DDD per 100 consultations. StGr: Streptogramins

© 2016 American Medical Association. All rights reserved.
eTable 2: On-intervention/Per-Protocol Analysis

<table>
<thead>
<tr>
<th>Prescriptions per year [DDD/100c, all antibiotic types]</th>
<th>Year 1</th>
<th>Change from Baseline [between-group difference]</th>
<th>p-value</th>
<th>Year 2</th>
<th>Change from Baseline [between-group difference]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventions group physicians (n=1025)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group physicians (n=1173)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - 18 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 - 65 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 65 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prescriptions per year [DDD/100c, all patients]

Penicillins (beta-Lactams)						
Other beta-Lactams						
Quinolones						
Macrolides, Lincosamides, StGr						
Tetracyclines						
Sulfonamides/Trimethoprim						
Aminoglycosides						
Other						

Median (interquartile range). DDD: Defined daily drugs. DDD/100c: DDD per 100 consultations. StGr: Streptogramins
eTable 3: Subgroup and Sensitivity Analyses

<table>
<thead>
<tr>
<th>Prescriptions per year</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DDD/100c, all antibiotic types)</td>
<td>Change from Baseline (between-group difference)</td>
<td>Change from Baseline (between-group difference)</td>
</tr>
<tr>
<td>Subgroup analyses</td>
<td>p-value difference</td>
<td>p-value</td>
</tr>
<tr>
<td>Physicians self-dispensing (n=1081)</td>
<td>1.61% (-3.80%, 7.33%)</td>
<td>0.57</td>
</tr>
<tr>
<td>Physicians non-self-dispensing (n=1281)</td>
<td>0.05% (-4.81%, 5.17%)</td>
<td>0.98</td>
</tr>
<tr>
<td>Patient-mix type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physicians prescribing medications for many comorbidities (n=894)</td>
<td>-0.35% (-6.15%, 5.81%)</td>
<td>0.91</td>
</tr>
<tr>
<td>Physicians prescribing medication for fewer comorbidities (n=1920)</td>
<td>1.31% (-2.79%, 5.58%)</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Sensitivity analyses

Different outcome definition: Prescribed packages of antibiotics per 100 consultations (n=2814)

- Physicians who opted out from the study excluded (n=2620): -1.40% (-4.80%, 2.13%) p-value difference 0.43 -3.35% (-6.73%, 0.15%) p-value 0.06
- Model without baseline covariates (n=2842): 0.64% (-2.71%, 4.11%) p-value difference 0.71 -1.69% (-5.02%, 1.75%) p-value 0.33
- Physicians with incomplete antibiotic prescription data at any time point excluded (n=2543): -0.57% (-3.88%, 2.86%) p-value difference 0.74 -2.78% (-6.03%, 0.58%) p-value 0.10
- Physicians with outliers for antibiotic prescription data at any time point excluded (n=2747): -0.41% (-2.67%, 1.91%) p-value difference 0.73 -2.73% (-4.98%, -0.43%) p-value 0.02

Wilcoxon test results on changes in medians between intervention and control: p=0.96 (first year, n=2766, 7 physicians with zero prescriptions included) and p= 0.14 (second year, n=2643, 0 physicians with zero prescriptions included)

Analyses are based on the main model (intention-to-treat analyses; n=2814) with modifications as specified, if not otherwise stated.

- **a)** p-value for interaction = 0.90 in both cases
- **b)** 211 physicians excluded who declined receiving feedback (opting out); 17 of them were already excluded for other reasons from the main analysis.
- **c)** The 28 physicians (intervention group: 11; control group: 17) with missing or outlying baseline covariate information (i.e. number of patients at baseline, dispensing method, or patient-mix type as derived from cluster analysis), data errors for baseline covariates, or very atypical combination of values for baseline covariates indicating group practices were included in this analysis.
- **d)** Incomplete antibiotic prescription data for 271 physicians (intervention group: 137; control group: 134). Of note, only in this analysis were physicians excluded because of incomplete antibiotic prescription data.
- **e)** Outliers for antibiotic prescription data for 67 physicians (intervention group: 33; control group: 34). Of note, only in this analysis were physicians excluded because of outliers for antibiotic prescription data.
Webappendix: Search strategy for “Research in Context”

We searched for randomized controlled trials (RCTs), including cluster RCTs, evaluating antibiotic prescription feedback interventions in primary care which are implementable on a system level, i.e. not involving direct physician contact, and without combined patient directed interventions. We searched PubMed from inception to 2016 for systematic reviews on antibiotic prescription feedback interventions. The two most recent relevant reviews were perused for eligible RCTs. For the time-period not covered by these reviews, we directly queried PubMed for RCTs (i.e. from 1 January 2012 to 28 September 2016). We combined MeSH headings and text terms for “antibiotics” and “feedback” and used the PubMed standard filter for systematic reviews and a Cochrane standard filter for RCTs.

<table>
<thead>
<tr>
<th>Search Query</th>
<th>Items found</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 (((systematic[sb]) AND ("feedback"[tiab] OR "Feedback"[Mesh]))) AND ("antibiotic*"[tiab] OR "antimicrobial*"[tiab] OR "Anti-Bacterial Agents"[Mesh])</td>
<td>48</td>
</tr>
<tr>
<td>Search date: 28 September 2016; Interface: PubMed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search Query</th>
<th>Items found</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 "antibiotic*"[tiab] OR "antimicrobial*"[tiab] OR "Anti-Bacterial Agents"[Mesh]</td>
<td>458294</td>
</tr>
<tr>
<td>#1 "feedback"[tiab] OR "Feedback"[Mesh] OR "peer comparison"[tiab]</td>
<td>123978</td>
</tr>
<tr>
<td>Search date: 28 September 2016; Interface: PubMed</td>
<td></td>
</tr>
</tbody>
</table>