
© 2019 American Medical Association. All rights reserved. 1 
 

Supplementary Online Content 

Berkowitz SA, Terranova J, Randall L, Cranston K, Waters DB, Hsu J. Association 
between receipt of a medically tailored meal program and health care use. JAMA Intern 
Med. Published online April 22, 2019. doi:10.1001/jamainternmed.2019.0198 

eAppendix. Community Servings Home Delivered Meals Programs 

eMethods. Technical Aspects 

eTable 1. Covariates 

eFigure 1. Flowchart of Data Preprocessing and Matching Procedures 

eTable 2. Balance Table Comparing Standardized Mean Differences in Demographic and 
Clinical Characteristics by Community Servings Participation Status and by Distance to 
Community Servings 

eTable 3. Association Between Instrumental Variable (Distance to Community Servings) 
and Covariates 

eTable 4. Sensitivity Analyses for Primary and Secondary Outcomes After Near/Far 
Matching Analysis, Using Non-Winsorized Outcomes 

eFigure 2. Bias Plots 

eTable 5. Sensitivity Analyses to Quantify Magnitude of Residual Confounding 
Necessary to Shift Estimate of Association to 1 (No Association) 

eReferences. 

This supplementary material has been provided by the authors to give readers additional 
information about their work. 

 

 

   



© 2019 American Medical Association. All rights reserved. 2 
 

eAppendix. Community Servings Home Delivered Meals Programs 

 

  



© 2019 American Medical Association. All rights reserved. 3 
 

eMethods. Technical Aspects 

	

Covariates	

We	considered	5	categories	of	covariates	for	matching	and	adjustment	in	the	study,	as	

detailed	in	the	table	below.	

eTable	1:	Covariates	
Variable	 Category	 Source	
Age	 Demographics	 Member	Eligibility	files	
Gender	 Demographics	 Member	Eligibility	files	
Insurance	Type	 Demographics	 Member	Eligibility	files	
Race/ethnicity	 Demographics	 Member	Eligibility	files	
Disability	Status	 Demographics	 Member	Eligibility	files	
Gagne	Comorbidity	Index	 Comorbidity	 Claims	files,	based	on	ICD‐

9	codes	
Human	Immunodeficiency	
Virus	Status	Indicator	

Comorbidity	 Claims	files,	based	on	ICD‐
9	codes	

Cancer	 Comorbidity	 Claims	files,	based	on	ICD‐
9	codes	

End	Stage	Renal	Disease	 Comorbidity	 Claims	files,	based	on	ICD‐
9	codes	

Diabetes	Mellitus	 Comorbidity	 Claims	files,	based	on	ICD‐
9	codes	

Congestive	Heart	Failure	 Comorbidity	 Claims	files,	based	on	ICD‐
9	codes	

Presence	of	a	‘Triggering	Event’	
(Inpatient	Admission	within	6	
Months	of	Index	Date	

Healthcare	Use	 Claims	Files	

Number	of	Inpatient	
Admissions	

Healthcare	Use	 Claims	Files	

Number	of	Skilled	Nursing	
Facility	Admissions	

Healthcare	Use	 Claims	Files	

Number	of	Home	Health	Visits	 Healthcare	Use	 Claims	Files	
Total	Medical	Costs	 Healthcare	Use	 Claims	Files	
Total	Pharmaceutical	Costs	 Healthcare	Use	 Claims	Files	
High‐Dimensional	Propensity	
Score	

High‐Dimensional	
Propensity	Score	

Claims	files,	based	on	ICD‐
9	codes	

*All	data	taken	from	360	days	prior	to	index	date	
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Data	Preprocessing	and	Matching	

Because	near/far	matching	is	computationally	intensive1,	and	the	Massachusetts	All‐Payer	

Claims	Database	is	very	large	(over	7	million	individual	adults)	we	proceeded	in	several	

steps	to	conduct	the	matching,	following	the	flowchart	below.		

	

eFigure	1:	Flowchart	of	Data	Preprocessing	and	Matching	Procedures	

	

	

Statistical	Analysis	

Our	major	concern	when	analyzing	the	data	for	this	study	was	to	address	the	potential	for	

confounding	introduced	by	non‐random	assignment	to	the	intervention.	To	do	this	we	used	

an	instrumental	variable	analysis	approach	called	‘near/far’	matching.1,2	This	method	seeks	
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to	construct	a	matched	cohort	that	is	as	similar	as	possible	on	relevant	sociodemographic	

and	clinical	characteristics,	but	that	differs	in	whether	an	individual	was	‘encouraged’	or	

‘discouraged’	to	receive	the	intervention	based	on	their	value	of	an	instrumental	variable.	

One	can	view	a	standard	matching	algorithm	as	trying	to	minimize	the	multi‐dimensional	

‘distance’	between	a	set	of	variables	(for	example,	by	viewing	a	61‐year	old	Hispanic	female	

as	being	‘closer’	to	a	62‐year	old	Hispanic	female	than	a	55‐year	old	non‐Hispanic	Black	

female).	Near/far	matching	extends	this	approach	by	trying	to	minimize	the	distance	

between	all	covariates	except	one—the	instrumental	variable,	for	which	it	tries	to	

maximize	the	distance	between	2	pairs.	This	results	in	a	set	of	matched	pairs	that	are	as	

similar	as	possible	on	all	included	covariates,	while	simultaneously	being	as	far	apart	as	

possible	on	the	value	of	their	instrumental	variable.	This	effectively	emulates	a	‘matched‐

pairs’	randomized	trial	design	where	two	individuals	who	are	similar	on	baseline	

characteristics	are	randomly	assigned	to	receive	different	treatments.	This	has	the	effect	of	

tending	to	strengthen	the	instrumental	variable	as	when	baseline	characteristics	are	more	

similar	between	individuals,	the	instrumental	variable	is	more	likely	to	make	the	difference	

as	to	whether	the	individual	receives	the	treatment	or	not.	Since	a	formal	statistical	

justification	for	near/far	matching	is	beyond	the	scope	of	this	paper,	we	recommend	as	an	

introduction	to	the	method	the	paper	“Near/far	matching:	a	study	design	approach	to	

instrumental	variables”	by	Baiocchi	et	al.2	

In	this	study,	the	instrumental	variable	was	the	distance	an	individual	lived	from	

Community	Servings,	which	should	subtly	‘encourage’	those	living	closer	to	enroll.	In	short,	

we	attempt	to	address	the	potential	for	confounding	by	observed	variables	by	matching	

and	by	unobserved	variables	by	using	the	instrument.	The	function	of	distance	as	an	
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instrument	in	this	study	was	justified	on	the	basis	of	1)	being	likely	to	affect	receipt	of	the	

intervention	(with	individuals	living	closer	more	likely	to	receive	the	intervention),	2)	not	

being	associated	with	the	outcome	except	by	receipt	of	the	intervention	(as,	within	the	

study	area,	there	is	no	reason	to	think	that	proximity	to	Community	Servings	as	an	

organization,	as	opposed	to	proximity	to	a	clinic	or	hospital,	would	otherwise	affect	

healthcare	utilization),	and	3)	there	being	no	expected	confounding	between	the	

instrument	and	the	intervention,	as	individuals	are	unlikely	to	choose	where	they	live	

based	on	proximity	to	Community	Servings.	We	formally	test	the	first	assumption	by	

examining	the	strength	of	the	instrument	using	the	F‐statistic	for	a	regression	of	distance	

on	meal	program	participation	(generally,	an	F‐statistic		>	13	is	considered	a	sufficiently	

‘strong’	instrument3),	and	by	examining	how	the	odds	of	participation	decreased	as	one	

lived	farther	away	from	Community	Servings.		

The	second	and	third	assumptions	are	not	formally	testable,	as	there	could	always	

be	unmeasured	confounding.	Instead,	to	support	the	role	of	distance	as	an	instrument	in	

this	case,	we	present	a	balance	table	showing	that,	when	categorized	by	distance	rather	

than	receipt	of	the	intervention,	balance	on	important	confounding	variables	improves,	

even	without	matching.	This	suggests	that	there	is	an	element	of	‘randomization’	

introduced	by	the	instrument,	at	least	for	the	observed	covariates.		

In	testing	the	assumptions	of	our	instruments,	we	several	analyses	demonstrated	

that	living	closer	to	Community	Servings	was	associated	with	higher	likelihood	of	receiving	

the	intervention.	The	first	stage	F‐statistic	for	prediction	of	intervention	receipt	by	distance	

was	218.62,	and	the	odds	ratio	for	receipt	by	distance	was	0.96	(95%	confidence	interval	
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[95%CI]	0.95	to	0.97,	p<.0001),	meaning	that	for	every	1km	farther	from	Community	

Servings	an	individual	lived,	the	odds	of	intervention	receipt	decreased	by	4%.	Further,	

categorizing	individuals	by	distance	from	Community	Servings	led	to	all	substantially	

better	covariate	balance	(eTable	2),	which	supports	the	role	of	distance	as	an	instrumental	

variable.	eTable	2	presents	results	of	a	dichotomized	version	of	the	instrumental	variable,	

which	is	necessary	to	calculate	a	standardized	mean	difference.	This	was	done	for	

illustrative	purposes	in	testing	the	instrument,	and	made	use	of	an	arbitrary	

dichotomization.	However,	since	distance	is	a	continuous	variable,	we	also	conducted	

additional	tests	of	association	between	the	candidate	instrument	and	measured	covariates	

to	examine	whether	there	was	an	association	between	the	candidate	instrument	and	these	

factors	that	may	affect	the	outcome.	We	found	no	evidence	of	such	an	association,	with	very	

weak	F‐statistics	(3.15	was	the	highest,	most	values	less	than	1)	and	low	amounts	of	

variation	in	the	covariates	explained	by	the	candidate	instrument	(generally	less	than	1%).	

These	results	are	presented	in	eTable	3.		

After	conducting	the	matches	and	instrument	testing	as	above,	we	conducted	

statistical	analyses	using	the	two‐stage	residual	inclusion	(2SRI)	approach	to	instrumental	

variable	analyses.4	We	used	this	approach	because	the	outcomes	we	were	modeling,	

healthcare	utilization	and	cost,	are	not	well	modelled	using	ordinary	least	squares	

regression,	which	is	required	for	the	alternative,	two‐stage	least	squares,	approach	to	

instrumental	variable	analysis,	and	because	our	treatment	was	binary	rather	than	

continuous.	Using	the	2SRI	approach	we	fit	a	first‐stage	logistic	regression	model	that	

predicts	receipt	of	the	intervention	using	distance,	the	instrumental	variable,	and	adjusting	

for	the	above	mentioned	covariates	(eTable	1).	Next,	the	residuals,	defined	as	the	
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difference	between	the	observed	and	predicted	values	from	the	first	stage	model	are	

calculated.	Finally,	a	second‐stage	model,	which	can	be	a	generalized	linear	model,	is	fit	by	

regressing	the	outcome	on	receipt	of	the	intervention,	along	with	the	residuals	from	the	

first‐stage	model	and	the	other	covariates.	For	the	event	data	(inpatient	admission,	skilled	

nursing	facility	admissions,	and	emergency	department	admissions)	we	fit	Poisson	

regression	models	with	a	log	link	in	the	second	stage.	For	the	spending	data,	we	fit	gamma	

regression	models	with	a	log	link,	selecting	the	gamma	distribution	after	conducting	

modified	Park	tests	as	suggested	by	Manning	and	Mullahy.5	All	models	adjusted	for	

covariates	to	account	for	any	residual	imbalance	after	matching.	Analyses	also	adjusted	for	

the	index	date	to	account	for	secular	trends.	Our	analyses	followed	the	intention‐to‐treat	

approach	whereby	individuals	who	enrolled	in	the	intervention	continued	to	be	analyzed	

as	part	of	the	intervention	even	if	they	stopped	participating.	

	 To	express	the	results	of	these	models	on	the	absolute	(risk	difference)	and	relative	

(risk	ratio)	scale,	we	used	the	method	of	recycled	predictions,	also	known	as	the	

parametric	g‐formula,	which,	after	fitting	the	model	in	the	original	dataset,	generates	

predicted	values	for	the	outcome	in	datasets	where	all	participants	are	artificially	set	to	

have	received	and	not	received	the	intervention.6	This	standardizes	the	predictions	over	

the	observed	distribution	of	the	relevant	covariates.	To	obtain	confidence	intervals,	we	

used	a	nonparametric	bootstrap	of	the	entire	process	(both	the	first‐	and	second‐stage	

models),	with	1000	replications.4		

As	sensitivity	analyses,	we	also	sought	to	quantify	the	amount	of	unmeasured	

confounding	that	would	be	required	to	render	the	observed	treatment‐outcome	association	
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null	(risk	ratio	of	1).	We	did	this	using	the	E‐Value	approach.7,8	This	approach	quantifies	

the	minimum	strength	of	association	an	unobserved	confounder	would	have	to	have	with	

both	the	treatment	and	the	outcome	in	order	to	adjust	the	observed	treatment‐outcome	

association	to	1.	We	present	both	bias	plots	(which	plot	the	frontier	of	the	necessary	

confounder‐treatment	and	cofounder‐outcome	association)	(eFigures	2a‐2c)	and	a	table	

(eTable	5)	presenting	the	E‐Values	(minimum	strength	of	association	needed)	for	each	of	

the	three	main	outcomes	(inpatient	admissions,	skilled	nursing	admissions,	and	healthcare	

expenditures).	These	show	that	it	would	take	very	strong	unobserved	confounding,	

stronger	than	that	of	any	observed	variable,	to	render	the	observed	treatment‐outcome	

association	null.		
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eTable	2:	Balance	Table	Comparing	Standardized	Mean	Differences	in	Demographic	and	Clinical	
Characteristics	by	Community	Servings	Participation	Status	and	by	Distance	to	Community	
Servings	

	

Standardized	mean	
difference	between	those	
who	did	and	did	not	

participate	in	Community	
Servings	

Standardized	mean	
difference	between	those	
who	did	and	did	not	live	
within	30	kilometers	of	
Community	Servings	

Age,	years	 0.0849	 0.0204	
Female	 0.1709	 0.0241	
Race/ethnicity	 0.7976	 0.2136	
Insurance	 0.8900	 0.1531	
Participant	on	disability	 0.6725	 0.1140	
Experienced	‘triggering	event’	 0.8713	 0.0350	
Number	of	inpatient	visits	in	past	
12	months	 0.3101	 0.0254	

Number	of	skilled	nursing	facility	
visits	in	past	12	months	 0.0601	 0.0094	

Number	of	home	health	visits	in	
past	12	months	 0.3400	 0.0134	

Total	healthcare	costs	in	past	12	
months,	$	

0.2851	 0.0063	

Comorbidity	index	 1.2831	 0.0474	
Human	immunodeficiency	virus	
positive	 0.7112	 0.0488	

History	of	cancer	 0.6488	 0.0078	
History	of	end	stage	renal	disease	 0.8167	 0.0369	
History	of	diabetes	mellitus	 0.7039	 0.0485	
History	of	congestive	heart	failure	 0.7392	 0.0363	
Percent	living	in	poverty	in	zip‐
code	tabulation	area	

1.2086	 0.1195a	

Emergency	department	visits	in	
healthcare	service	area	

0.2909	 0.2006	

aadjusted	for	repeated	measurements	within	zip‐code	tabulation	area	
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eTable	3:	Association	Between	Instrumental	Variable	(Distance	to	Community	Servings)	
and	Covariates		

F‐statistic	 R‐squared	
Age,	years	 0.06	 0.00003	
Female	 0.01	 0.0003	
Race/ethnicity	 0.06	 0.005	
Insurance	 1.24	 0.004	
Participant	on	disability	 1.34	 0.004	
Experienced	‘triggering	event’	 0.34	 0.0001	
Number	of	inpatient	visits	in	
past	12	months	

3.15	 0.004	

Number	of	skilled	nursing	
facility	visits	in	past	12	months	

0.29	 0.0005	

Number	of	home	health	visits	
in	past	12	months	

2.04	 0.006	

Total	healthcare	costs	in	past	
12	months,	$	

0.24	 0.002	

Comorbidity	index	 0.05	 0.0002	
Human	immunodeficiency	
virus	positive	

0.04	 0.0008	

History	of	cancer	 0.49	 0.0002	
History	of	end	stage	renal	
disease	

1.27	 0.001	

History	of	diabetes	mellitus	 0.32	 0.001	
History	of	congestive	heart	
failure	

2.61	 0.00002	

Percent	living	in	poverty	in	
zip‐code	tabulation	area	

0.75	 0.029	

Emergency	department	visits	
in	healthcare	service	area	

0.36	 0.002	
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eTable	4:	Sensitivity	Analyses	for	Primary	and	Secondary	Outcomes	After	Near/Far	Matching	
Analysis,	Using	Non‐Winsorized	Outcomes	
	 Incidence	rate	ratio	(95%	CI)	 Risk	Difference	per	1000	

person	years	(95%	CI)	
Inpatient	Admissions	 0.49	(0.04	to	0.94)	 ‐624	(‐993	to	‐254)	
	 	 	
Skilled	Nursing	Facility	
Admissions	

0.35	(0.01	to	0.72)	 ‐967	(‐1934	to	‐496)	

	 	 	
	 Relative	risk	of	mean	per	person	

per	month	expenditures	(95%	
CI)	

Difference	in	mean	per	
person	per	month	
expenditures	(95%	CI)	

Healthcare	Costs	 0.76	(0.57	to	0.94)	 ‐$1858.53	(‐$2880.15	to		
‐$836.91)	
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eFigure	2.	Bias	Plots	

	

Bias	plots	represent	varying	levels	of	unobserved	confounder‐treatment	association	and	
unobserved	confounder‐outcome	association	necessary	to	render	observed	treatment‐
outcome	association	null	for	inpatient	admission	(2a),	Skilled	Nursing	Facility	Admissios	
(2b)	and	healthcare	expenditures	(2c).7,8	
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eFigure	2a:	
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eFigure	2b:	

	

	

	 	



© 2019 American Medical Association. All rights reserved. 16 
 

eFigure	2c:	
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eTable	5:	Sensitivity	Analyses	to	Quantify	Magnitude	of	Residual	Confounding	Necessary	
to	Shift	Estimate	of	Association	to	1	(No	Association)	

	

Relative	Risk	of	
Association	of	
Variable	with	
Receipt	of	

Intervention*		

Relative	Risk	of	
Variable	with	
Inpatient	
Admissions	

Relative	Risk	of	
Variable	with	
Skilled	Nursing	

Facility	
Admissions	

Relative	Risk	of	
Variable	with	
Healthcare	
Costs	

E‐Value	 n/a	 3.33	 6.60	 1.67	

Age,	years	 1.02	 1.00	 1.05	 1.00	

Female	 1.06	 1.04	 1.19	 1.06	

Race/ethnicity	 1.33	 1.69	 1.85	 1.25	

Insurance	 1.79	 1.72	 1.61	 1.39	

Participant	on	
disability	

1.82	 1.18	 1.02	 1.16	

Experienced	
‘triggering	
event’	

2.18	 1.36	 2.60	 1.41	

Number	of	
inpatient	visits	
in	past	12	
months	

1.04	 1.09	 1.19	 1.14	

Number	of	
skilled	nursing	
facility	visits	in	
past	12	months	

1.01	 1.02	 1.05	 1.01	

Number	of	
home	health	
visits	in	past	12	
months	

1.00	 1.00	 1.00	 1.00	

Total	
healthcare	
costs	in	past	12	
months,	$	

1.00	 1.00	 1.00	 1.00	

Comorbidity	
index	

1.01	 1.03	 1.02	 1.05	

Human	
immunodeficie
ncy	virus	
positive	

1.01	 1.20	 1.82	 1.90	

History	of	
cancer	

1.13	 1.00	 1.10	 1.11	
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History	of	end	
stage	renal	
disease	

1.36	 1.48	 1.27	 1.20	

History	of	
diabetes	
mellitus	

1.15	 1.37	 2.36	 1.10	

History	of	
congestive	
heart	failure	

1.22	 1.04	 1.32	 1.02	

Percent	living	
in	poverty	in	
zip‐code	
tabulation	area	

1.00	 1.00	 1.00	 1.01	

Tables	present	‘E‐values’,	the	minimum	strength	of	association	an	unmeasured	
confounder	would	have	to	possess	between	both	the	treatment	and	the	outcome	in	order	
to	reduce	the	observed	association	between	the	treatment	and	outcome	to	1	(no	
association)	on	the	relative	scale.	For	example,	for	an	E‐Value	of	2,	an	unmeasured	
confounder	would	have	to	have	relative	risk	of	association	of	≥2	for	the	outcome	and	a	
relative	risk	of	association	of	≥2	to	make	the	treatment‐outcome	association	null.	For	
comparison,	the	associations	of	measured	covariates	between	either	the	treatment	or	
outcome,	expressed	as	relative	risks,	are	also	presented.		
*To	facilitate	comparison	to	the	E‐Value,	all	relative	risks	less	than	1	have	been	inverted	
so	that	associations	expressed	are	greater	than	1.	For	example,	if	relative	risk	was	0.5	
this	would	be	inverted	to	1/0.5	=	2.7,8	
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