Effect of Hydrocortisone on Mortality and Organ Support in Patients with Severe COVID-19
The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial
The REMAP-CAP Investigators

REMAP-CAP COVID-19 Corticosteroid Domain Trial protocol supplement

1.1. Introduction:
As an international multi-factorial adaptive platform trial, designed to run in both inter-pandemic and pandemic periods, the REMAP-CAP protocol is modular and was updated as the COVID-19 pandemic developed. This supplement provides an introductory summary of the various protocol documents relevant to the Corticosteroid Domain analysis for patients with suspected or proven COVID-19 presented in this manuscript, as well as including the relevant full protocol documents for reference.

1.2. Protocol structure
The key central features of the platform, focusing mainly on community acquired pneumonia (CAP) in the inter-pandemic period, are described in the REMAP-CAP Core protocol and the details of the specific interventions evaluated are contained in Domain Specific Appendices (DSA). For this manuscript that is the Corticosteroid DSA.

As the threat of the COVID-19 pandemic developed in early 2020, the REMAP-CAP Core protocol was updated to be more applicable to this new disease. These adaptations are defined in the Pandemic Appendix to Core (PAtC) protocol. Version 1.0 was completed on 31st January 2020 and updated to version 1.1 on 12th February 2020. The first participant with COVID-19 recruited to the trial was on 9th March 2020.

In some countries, REMAP-CAP was not running prior to the pandemic. Therefore, a simplified combined version of the existing REMAP-CAP Core protocol and Pandemic
Appendix to Core was produced to focus only on those details relevant for patients with COVID-19 (REMAP-COVID Core protocol).

Relevant protocol documents included in this supplement are:

- **Pandemic Appendix to Core (PAtC) protocol** (Version 2.0, 18th May 2020 including summary of changes from version 1.1, 12th February 2020) --- Page 5.
- **Corticosteroid Domain Specific Appendix** (Version 4.0, 21st July 2020 including summary of changes from version 3.0, 12th July 2019) --- Page 301.

All additional protocol documents can be found at www.remapcap.org/protocol-documents

1.3. Inclusion / Exclusion Criteria

Platform Inclusion / Exclusion criteria for COVID-19

These are described in the PAtC Eligibility criteria.

Importantly for COVID-19, recruitment could occur outside of the intensive care unit and/or without requiring organ support ([moderate disease state](#)). Patients admitted to intensive care and requiring organ support are defined as being in the [severe disease state](#).

Only patients in the severe state were recruited in the Corticosteroid Domain.

Corticosteroid Domain Inclusion / Exclusion criteria

There were no additional inclusion criteria for the corticosteroid domain other than the COVID-19 severe state platform criteria. The specific corticosteroid domain exclusion criteria are described in the [Corticosteroid DSA](#).

1.4. Outcomes

Primary Outcome for COVID-19:
This is described in the PAtC, as the “pandemic primary endpoint”. It is an ordinal scale that is a composite end-point that comprises mortality during the acute hospital admission (assigned as -1) and the number of whole study days for which the patient is alive and not requiring organ failure support while admitted to an ICU up until the end of study day 21.

In the REMAP-COVID core protocol this was referred to as “ICU free days” and is operationalized as defined in the PAtC.

Secondary Outcomes:

These are specified in the REMAP-CAP Core protocol. In addition, all-cause 90-day mortality, which is the primary end-point specified in the Core Protocol for non-pandemic patients, is a secondary end-point in the pandemic stratum.

1.5. Treatments:

These are described in full in the Corticosteroid DSA.

1.6. Statistical Analysis Plan (SAP)

The statistical model was updated in the PAtC. The pandemic stratum was activated to include patients with suspected or confirmed pandemic infection (COVID-19) and a separate pandemic model was defined to include only patients in this pandemic stratum. Within the pandemic stratum further stratification took place excluding patients with suspected COVID-19 who had only negative microbiology tests.

Once it was decided to stop recruitment in the pandemic stratum of the Corticosteroid Domain and analyse the data for publication, a specific COVID-19 Corticosteroid Domain Statistical Analysis Plan (SAP) was written, prospectively describing the details of this analysis. All authors of this SAP were still blind to treatment allocations and results at this time. This SAP defines the 20 specific prospective analyses presented in this manuscript.

1.7. The Statistical Analysis Committee

The need to undertake regular interim analyses, generating response-adaptive randomisation proportions, and to conduct this Corticosteroid Domain analysis including
details of patients assigned treatment in other domains that are still recruiting, requires that some of the statistical team are unblinded. This role is undertaken by the statistical analysis committee (SAC). Details of the analysis undertaken by the unblinded SAC (conducted on 31st July 2020) and also by other investigators are provided in the COVID19 Corticosteroid SAP, unblinding section.
Randomized, Embedded, Multifactorial Adaptive Platform trial for Community-Acquired Pneumonia (REMAP-CAP):

PANDEMIC APPENDIX TO THE CORE PROTOCOL (REMAP-COVID)
Summary

Background: REMAP-CAP is an adaptive platform trial that evaluates multiple aspects of care of patients who are admitted to an Intensive Care Unit (ICU) with severe Community Acquired Pneumonia. It is reasonable to presume that any pandemic respiratory infection of major significance to public health will manifest as severe Community Acquired Pneumonia with concomitant admission to an ICU. Previous pandemics and more localized outbreaks of respiratory emerging infections have resulted in severe Community Acquired Pneumonia (CAP) and admission to an Intensive Care Unit\(^1\)-\(^3\). Admission to an ICU may occur at the time of first presentation to a hospital or may be preceded by admission to a non-ICU ward or floor. For patients admitted to a non-ICU ward there is an opportunity to intervene to prevent the development of severe CAP. A pandemic of respiratory infection is much more likely to be caused by a virus than a bacterium. Differences in trial design may be required for influenza, viruses which are known to result in periodic but unpredictable pandemics, in comparison with other viruses, such as Coronaviruses that may also have pandemic potential.

Previous pandemics and outbreaks of emerging infectious diseases have outlined the urgent need for evidence, preferably from Randomized Clinical Trials, to guide best treatment. However, there are substantial challenges associated with being able to organize such trials when the time of onset of a pandemic and its exact nature are unpredictable\(^4\)-\(^6\). As an adaptive platform trial that enrolls patients during the interpandemic period, REMAP-CAP is ideally positioned to adapt, in the event of a respiratory pandemic, to evaluate existing potential as well as novel treatment approaches.

The precise nature of a respiratory pandemic cannot be known in advance. The Pandemic Appendix to the Core Protocol lists potential adaptations to trial design and management that are generic, in that they will occur irrespective of the nature of the pandemic, as well as adaptations that are possible, depending on the nature of the pandemic, and the process for determining which adaptations will be applied.

The Pandemic Appendix to the Core Protocol also achieves alignment with a separate document, REMAP-COVID Core Protocol, which comprises only those elements of the Core
Protocol of REMAP-CAP and the Pandemic Appendix that applies to the COVID-19 pandemic. For the COVID-19 pandemic, a site can utilize either the REMAP-CAP Core Protocol combined with the Pandemic Appendix to the Core Protocol, or REMAP-COVID Core Protocol. Both sets of documents specify identical methods and data requirements. Data derived from sites using either set of documents is analyzed in the same pandemic statistical model. A single site must use either REMAP-COVID Core Protocol or REMAP-CAP Core Protocol with this associated pandemic appendix.

The objective of the Pandemic Appendix to the Core Protocol (PAtC) is to describe the adaptations to the Core Protocol that would apply during a pandemic, including how analyses of domains already operative during the interpandemic period as well as domains that are pandemic-specific, will be integrated during a pandemic. This includes scientific, as well as governance and logistic aspects.

Aim: The primary objective of the REMAP during a pandemic is to identify the effect of a range of interventions to improve outcome for patients admitted to a hospital with acute illness due to suspected or proven pandemic infection, as defined by the pandemic primary end-point.

Methods: The methods that will be utilized during a pandemic are those in the Core Protocol but with potential for changes to the primary end-point, frequency and process for adaptive analyses, and determination of which domains will be analyzed using a statistical model that includes data from patients with proven or suspected pandemic infection. During a pandemic, patients who are neither suspected nor proven to have pandemic infection and for certain pre-existing domains, will continue to be analyzed using the statistical model that is outlined in the Core Protocol that was operating during the pre-pandemic period. Depending on the characteristics of a pandemic, one or more interpandemic domains may be analyzed within the pandemic statistical model and one or more pandemic-specific domains may be commenced for patients with suspected or proven pandemic infection.

Lay description

CONFIDENTIAL
REMAP-CAP is a global trial examining the best treatments for community-acquired pneumonia. In the setting of a pandemic that causes life-threatening respiratory infection, some key aspects of the study will be changed to integrate new interventions into the trial, evaluate existing interventions within the trial specifically in patients with pandemic infection, alter trial governance, and provide time-critical data for public health. This will allow the platform to identify which treatments work best for patients during a pandemic.
Table of Contents

1. **Abbreviations** ... 12
2. **Protocol Appendix Structure** ... 13
3. **Pandemic Appendix to the Core Protocol Version** 14
 3.1. Version History .. 14
4. **Pandemic Appendix to the Core Protocol Governance** 14
 4.1. Pandemic Working Group .. 15
 4.2. Contact Details .. 16
5. **Pandemic Working Group Authorisation** 16
6. **Background and Rationale** ... 16
 6.1. Introduction ... 16
 6.2. Pandemic research preparedness .. 18
 6.2.1. Introduction ... 18
 6.2.2. Pre-planned .. 18
 6.2.3. Pre-approved .. 19
 6.2.4. Practiced .. 20
 6.2.5. Implications of REMAP design during a pandemic 20
 6.2.5.1. Time-critical generation of evidence 20
 6.2.5.2. Multifactorial design and evaluation of interactions 21
 6.2.6. Setting of research priorities 22
 6.3. WHO endorsement ... 23
7. **Adaptation of REMAP-CAP During a Pandemic** 23
 7.1. Objectives .. 24
 7.2. Study setting: definition of an ICU and relationship of setting to severity of illness 24
 7.3. Eligibility criteria ... 25
 7.4. Pandemic stratum .. 26
 7.4.1. Introduction .. 26
 7.4.2. Activation and deactivation of the PAtC and PISOP stratum 27
 7.5. The pandemic statistical model ... 28
 7.5.1. Introduction .. 28
 7.5.2. Pre-specification of trial parameter options 29
 7.5.3. Application of other strata specified in the Core Protocol in the pandemic model 30
 7.5.4. Strata within the PISOP stratum 31
 7.5.5. States within the PISOP stratum 31
7.5.6. Domains incorporated in the pandemic model and use of informative priors derived from the interpandemic model ...33

7.5.6.1. Non-influenza pandemic organism ..34

7.5.6.2. Influenza pandemic ..34

7.5.7. Use of informative priors derived from information available from outside the REMAP 35

7.6. Endpoints ..36

7.6.1. Pandemic primary endpoint ..36

7.6.2. Secondary endpoints ...37

7.7. Principles of the statistical analysis ...37

7.7.1. Adaptive analyses ..37

7.7.2. Response adaptive randomization ..37

7.7.3. Unit-of-analysis ..38

7.7.3.1. Application of additional strata ...38

7.7.3.2. Application of state ..38

7.7.3.3. Analyses for combinations of therapies ..39

7.7.4. Thresholds for statistical triggers ...40

7.7.4.1. Introduction ...40

7.7.4.2. Intervention Superiority Statistical Trigger ..40

7.7.4.3. Intervention Efficacy Statistical Trigger ...41

7.7.4.4. Intervention Inferiority Statistical Trigger ..41

7.7.4.5. Equivalence and futility ...42

7.7.4.6. Statistical thresholds for early phase interventions42

7.7.5. Actions when a Statistical Trigger is achieved ...42

7.7.6. Pre-specified subgroup analyses after achievement of a platform conclusion42

7.7.7. Closure of the PISOP stratum and incorporation of data from pandemic statistical model into the interpandemic statistical model ..43

7.7.8. Domains with their own statistical model ...43

8. GOVERNANCE, ETHICAL, AND OPERATIONAL CONSIDERATIONS IN A PANDEMIC43

8.1. Decision to activate pandemic stratum ...43

8.2. Safety Monitoring and Reporting ..44

8.3. Data collection and management ...46

8.4. Role of the DSMB ...46

8.5. Communication of trial results ...47

8.6. Funding of the trial ...47

8.7. Monitoring ..48
9. REFERENCES ... 49

TABLE OF FIGURES

Figure 1. The multifactorial structure of REMAP-CAP... 22

Figure 2. Diagram of the interpandemic and pandemic models.. 28
1. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>Community-Acquired Pneumonia</td>
</tr>
<tr>
<td>CRF</td>
<td>Case Report Form</td>
</tr>
<tr>
<td>DSA</td>
<td>Domain-Specific Appendix</td>
</tr>
<tr>
<td>DSMB</td>
<td>Data Safety and Monitoring Board</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>ISIG</td>
<td>International Statistics Interest Group</td>
</tr>
<tr>
<td>ITSC</td>
<td>International Trial Steering Committee</td>
</tr>
<tr>
<td>MERS-CoV</td>
<td>Middle-Eastern Respiratory Syndrome Coronavirus</td>
</tr>
<tr>
<td>NAI</td>
<td>Neuraminidase inhibitors</td>
</tr>
<tr>
<td>PATC</td>
<td>Pandemic Appendix to the Core Protocol</td>
</tr>
<tr>
<td>PINSNP</td>
<td>Pandemic infection is neither suspected nor proven</td>
</tr>
<tr>
<td>PISOP</td>
<td>Pandemic infection is either suspected or proven</td>
</tr>
<tr>
<td>PWG</td>
<td>Pandemic Working Group</td>
</tr>
<tr>
<td>RAR</td>
<td>Response Adaptive Randomization</td>
</tr>
<tr>
<td>REMAP</td>
<td>Randomized, Embedded, Multifactorial, Adaptive Platform trial</td>
</tr>
<tr>
<td>REMAP-CAP</td>
<td>Randomized, Embedded, Multifactorial, Adaptive Platform trial for Community-Acquired Pneumonia</td>
</tr>
<tr>
<td>RCC</td>
<td>Regional Coordinating Center</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>RSA</td>
<td>Region Specific Appendix</td>
</tr>
<tr>
<td>SAC</td>
<td>Statistical Analysis Committee</td>
</tr>
<tr>
<td>SARS</td>
<td>Severe Acute Respiratory Syndrome</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
2. PROTOCOL APPENDIX STRUCTURE

The structure of this protocol is different to that used for conventional trials because this trial is highly adaptive and the description of these adaptations is better understood and specified using a ‘modular’ protocol design. While all adaptations are pre-specified, the structure of the protocol is designed to allow the trial to evolve over time, for example by the introduction of new domains or interventions or both (see glossary, Section 1.2 Core Protocol for definitions of these terms) and commencement of the trial in new geographical regions.

The protocol has multiple modules, in brief, comprising a Core Protocol (overview and design features of the study), a Statistical Analysis Appendix (details of the current statistical analysis plan and models), multiple Domain-Specific Appendices (DSA) (detailing all interventions currently being studied in each domain), a Registry Appendix, this Pandemic Appendix to the Core Protocol, and multiple Regions-Specific Appendices (RSA) (detailing regional management and governance).

The Core Protocol contains all information that is generic to the trial, irrespective of the regional location in which the trial is conducted and the domains or interventions that are being tested. The Core Protocol may be amended but it is anticipated that such amendments will be infrequent.

The Core Protocol does not contain information about the intervention(s), within each domain, because one of the trial adaptations is that domains and interventions will change over time. Information about interventions, within each domain, is covered in a DSA. These Appendices are anticipated to change over time, with removal and addition of options within an existing domain, at one level, and removal and addition of entire domains, at another level. Each modification to a DSA will be subject of a separate ethics application for approval.

The Core Protocol does not contain detailed information about the statistical analysis, because the analysis model will change over time in accordance with the domain and intervention trial adaptations, but this information is contained in the Statistical Analysis Appendix.
Appendix. These Appendices are anticipated to change over time, as trial adaptations occur. Each modification will be subject to approval from the International Trial Steering Committee (ITSC) in conjunction with advice from the International Statistics Interest Group (ISIG) and the Data Safety and Monitoring Board (DSMB).

The Core Protocol also does not contain information that is specific to a particular region in which the trial is conducted, as the locations that participate in the trial are also anticipated to increase over time. Information that is specific to each region that conducts the trial is contained within an RSA. This includes information related to local management, governance, and ethical and regulatory aspects. It is planned that, within each region, only that region’s RSA, and any subsequent modifications, will be submitted for ethical review in that region.

3. PANDEMIC APPENDIX TO THE CORE PROTOCOL VERSION

The version of the Pandemic Appendix to the Core Protocol is in this document’s header and on the cover page.

 3.1. Version History

Version 1: Approved by the Pandemic Working Group on 31st January, 2020

Version 1.1: Approved by the Pandemic Working Group on 12th February, 2020

Version 2.0: Approved by the Pandemic Working Group on 18th May, 2020

4. PANDEMIC APPENDIX TO THE CORE PROTOCOL GOVERNANCE

The study administration structure is outlined in the Core Protocol. As outlined in the Core Protocol, a Pandemic Working Group (PWG) is established and works in conjunction with the International Trial Steering Committee (ITSC), to take responsibility for the Pandemic Appendix to the Core Protocol (PAtC) and to advise on operational aspects following emergence of a pandemic.
4.1. *Pandemic Working Group*

The responsibility of the PWG is to maintain and update this PAtC and to advise the ITSC regarding application of the PAtC during a pandemic. The PWG will liaise with individuals and organizations that are external to REMAP-CAP as required. Membership of the PWG is flexible. The core membership is listed but additional members can be added at any time and as required.

Chair:

The Chair of the ITSC will Chair the Pandemic Working Group

Members:

Prof. Derek Angus

Prof. Yaseen Arabi

Prof. Richard Beasley

A/Prof. Scott Berry

Prof. Frank Brunkhorst

Dr. Lennie Derde

Dr. Robert Fowler

Prof. Anthony Gordon

Mr. Cameron Green

Dr. Ed Litton

Prof. John Marshall

Dr. Colin McArthur

A/Prof Bryan McVerry

Dr. Srinivas Murthy

Prof. Alistair Nichol

Ms. Jane Parker

Prof. Kathy Rowan

Prof. Tim Uyeki

Prof. Steve Webb
4.2. Contact Details

Chair: Professor Steve Webb
Department of Epidemiology and Preventive Medicine
School of Public Health and Preventive Medicine, Monash University
Level 3, 533 St Kilda Road
Melbourne, Victoria, 3004
AUSTRALIA
Phone: +61 3 9903 0343
Email: steven.webb@monash.edu

5. PANDEMIC WORKING GROUP AUTHORIZATION

The Pandemic Working Group have read the appendix and authorize it as the official Pandemic Appendix to the Core Protocol for the study entitled REMAP-CAP. Signed on behalf of the committee,

Chair: [Signature] Date: 18th May, 2020
Steve Webb

6. BACKGROUND AND RATIONALE

6.1. Introduction

It is reasonable to presume that any pandemic respiratory infection of major significance to public health will manifest as life-threatening respiratory infection including Severe Acute Respiratory illness and severe Community Acquired Pneumonia (CAP) with concomitant admission to hospital, and for some patients, admission to an Intensive Care Unit (ICU). Previous pandemics and more localized outbreaks of respiratory emerging infections have
resulted in severe CAP and ICU admission1-3. A pandemic of respiratory infection is much more likely to be caused by a virus than a bacterium and, among viruses a distinction should be drawn between influenza, which is known to result in periodic but unpredictable pandemics, and other viruses, such as Coronaviruses, that may have pandemic potential, as the features of trial design may be different.

Previous pandemics and outbreaks of emerging infectious diseases have outlined the urgent need for evidence, preferably from Randomized Controlled Trials (RCTs), to guide best treatment. However, there are substantial challenges associated with being able to organize such trials when the time of onset of a pandemic and its exact nature are unpredictable4-6. As an adaptive platform trial that enrolls patients during the interpandemic period, REMAP-CAP is ideally positioned to adapt, in the event of a respiratory pandemic, to evaluate existing treatments as well as novel approaches.

One of the challenges associated with planning clinical trials during a pandemic is that the precise nature of the infecting organism, clinical consequences, and suitable interventions (particularly those that are pathogen-specific) cannot be reliably known in advance. The speed of clinical progression, from initial infection to life-threatening severe respiratory infection is another feature that cannot be reliably known in advance. It is likely that a proportion of patients will present with severe CAP but other patients may present to medical attention with illness that is less severe, but remain at risk of progression to severe illness. Patients who require hospital admission, but have less severe illness are a particularly important group, because early intervention at this stage of illness may prevent progression to life-threatening illness. It is also possible that proposed treatment interventions may have differential treatment effect depending on the level of illness severity at the time that treatment is commenced, including treatment effects that are divergent. Nevertheless, a range of scenarios can be anticipated and used to provide direction and guidance regarding the most appropriate research response.

The most likely organism responsible for a respiratory pandemic is a novel influenza virus that has undergone antigenic shift7; the most recent influenza pandemic occurred during 2009-2010. In recent years, there have been outbreaks of severe Community Acquired Pneumonia due to novel Coronaviruses which resulted in the Severe Acute Respiratory
Syndrome (SARS) outbreak in 2003 and the Middle-Eastern Respiratory Syndrome Coronavirus (MERS-CoV) outbreak that commenced in 2012. SARS-CoV-2 is the cause of a pandemic of severe respiratory disease (COVID-19), including pneumonia, that commenced in 2019. The pre-specified adaptations to REMAP-CAP will need to be different for influenza in comparison to a non-influenza pandemic pathogen.

6.2. Pandemic research preparedness

6.2.1. Introduction

The conceptual approach to pandemic preparedness has been influenced substantially by the occurrence of the 2009 Influenza A H1N1(2009)pdm pandemic, outbreaks of SARS and MERS-CoV, the Zika pandemic, and Ebola virus disease outbreaks in West Africa\(^8\). A broad conclusion from these outbreaks is that it is likely that high quality research can change the incidence and consequences of the epidemic but that such research is extremely difficult because planning of research only commences after the discovery of the epidemic. As a consequence, researchers and organizations interested in developing improved processes for research have identified three key elements to facilitate time-critical research about an epidemic. These elements are that the research must be pre-planned, pre-approved, and practiced\(^9,10\). REMAP-CAP and, in particular, the PAtC, is an attempt to establish these pre-requisites and to guide treatment for patients who may be critically ill with pneumonia as a consequence of infection with a pandemic organism.

The World Health Organization (WHO) has recommended establishing and strengthening outbreak-ready, multi-center clinical research networks in geographically diverse regions to facilitate research during pandemics\(^11\). It has also recommended testing of protocols during interpandemic periods and stressed the value of such clinical research consortia in collecting and distributing information during a future pandemic.

6.2.2. Pre-planned

Pre-planned means that the trial protocol is written and that the trial processes related to project management, screening, recruitment, delivery of interventions, data collection, data management, analysis, and reporting are all in place. The PAtC, in conjunction with the
existing REMAP-CAP protocol documents and trial processes, will mean that all aspects that can be pre-planned have been.

6.2.3 Pre-approved

The PAtC is a key component of the of the pre-approval strategy. The availability of this document allows ethics review boards, hospital research governance staff, existing and potential sites to understand and approve the study processes that would be implemented during a pandemic. Where different options need to exist, depending on the nature of the pandemic, these are pre-specified, as much as possible. Any unanticipated substantive deviation from this Appendix would be subject to an amendment, hopefully expedited, in the event of a pandemic. The PAtC, like the Core Protocol, does not specify any interventions that are evaluated within the REMAP. It is highly likely that one or more research questions (in domains already approved during the interpandemic period) will be relevant specifically in patients with severe respiratory disease including pneumonia caused by the pandemic infection. The PAtC allows these questions to continue to be answered specifically in patients with pandemic infection, where appropriate, using Bayesian prior probabilities derived from patients already enrolled during the interpandemic period. It is proposed to develop ‘sleeping domains’, which could be activated if appropriate during a pandemic, as well as retain the option of developing one or more completely new domains following the emergence of pandemic, which would require separate ethical approval and contracts with participating sites.

This strategy, as part of the study design, offers an ethically, clinically and legally acceptable mechanism for research in the context of a pandemic that can be initiated rapidly.

There are two further aspects relevant to ethical approval of the PAtC. The first is that existing or pandemic-specific domains of REMAP-CAP may include an intervention that specifies no treatment within that domain (noting that the Core Protocol specifies that all additional standard care is provided with treatment decisions being made by the treating clinician). This is clinically and ethically appropriate as the response of critically ill patients to a range of different treatments has proven to be unpredictable. There are many examples of treatments that have resulted in harm and situations in which surrogate outcome
measures were not reliable indicators of improvement in patient-centered outcomes. As such, there should not be any presumption that it is better for patients to receive active interventions.

The second is the capacity to apply Response Adaptive Randomization (RAR) within the REMAP. As outlined in the Core Protocol, RAR results in an increasing proportion of patients being allocated to any intervention within a domain that has a higher probability of being superior with that proportion increasing as statistical confidence accrues. Participants within REMAP-CAP during a pandemic may be able to benefit from information about the relative effectiveness of interventions that is not in the public domain and not available to patients who are not participants in REMAP-CAP. As outlined in the Core Protocol, any intervention confirmed to be superior within the REMAP is then implemented by application of a RAR proportion that is equal to 100%. RAR will be implemented for pandemic patients as soon as sufficient data have accrued and operational implementation is feasible.

6.2.4. Practiced

REMAP-CAP will be recruiting during the interpandemic period in multiple countries in both Southern and Northern Hemispheres with the support of several Regional Coordinating Centers. This research activity, during the interpandemic period, ensures that sites, site training, project management, data management, analysis processes, and trial governance are functional and practiced. Furthermore, the eligibility process and delivery of trial interventions are optimized for embedding which allows study processes to occur within minimal disruption to the delivery of clinical care, which may well be under substantial strain during a pandemic. There is already extensive experience with the Case Report Form (CRF) that is used and will continue to be used during a pandemic.

6.2.5. Implications of REMAP design during a pandemic

6.2.5.1. Time-critical generation of evidence

A pandemic will likely result in a large number of affected persons with cases occurring over a short period of time, perhaps as short as a few months. Conventional clinical trials that utilize frequentist statistical techniques require a fixed sample size with limited capacity to
analyze the results of the trial until recruitment is completed. The setting of the sample size requires an estimate of the size of the treatment effect and it is known that the assumptions that are made in setting the size of the treatment effect are often incorrect13,14. A frequentist trial that over-estimates the size of the treatment effect may conclude without reaching a valid conclusion, whereas one that under-estimates the size of the treatment effect is delayed in providing time-critical information that the treatment is even more effective than estimated.

REMAP-CAP utilizes Bayesian statistical methods which allow frequent adaptive analyses to occur. This will ensure that time-critical information about the effectiveness of treatment interventions is not delayed unnecessarily. The REMAP design is particularly suited to pandemics because it requires no pre-trial assumptions about the size of the treatment effect and will allow dissemination of evidence as soon as possible. Furthermore, as the trial progresses during a pandemic the Data Safety Monitoring Board (DSMB) has access to information from adaptive analyses that may not achieve thresholds to allow reporting as a Platform Conclusion but may be relevant to public health which, under appropriate circumstances, can be shared with public health authorities and the DSMBs of other trials evaluating the same or similar interventions without threatening the scientific validity of the ongoing trial.

\textit{6.2.5.2. Multifactorial design and evaluation of interactions}

If there are multiple interventions, each of which may have independent effects on outcome, the multi-factorial nature of a REMAP allows these to be evaluated simultaneously, rather than in series or in separate parallel trials (see \textit{Figure 1}). This design feature contributes to efficiency and is also anticipated to result in more clinical evidence being generated more rapidly during a time-critical pandemic.
Furthermore, where pre-specified, the statistical model utilized in REMAP-CAP will allow estimation of treatment effect of interventions that may be contingent on other treatment assignments within the pandemic component of the REMAP. For example, it is plausible that the effectiveness of an intervention for immune modulation is dependent on co-delivery of an agent that is effective at inhibiting growth or replication of the pathogen. Conventional trials, in which only a single domain of treatment is evaluated, are not capable of detecting this type of treatment-by-treatment interaction, and thereby unable to identify the best overall treatment strategy for these patients.

6.2.6. Setting of research priorities

In 2017, the WHO outlined the research priorities for a pandemic that was caused by a novel strain of influenza. These priorities were:

- Research on the effectiveness of empirical treatment with oseltamivir and other neuraminidase inhibitors (NAI) in critically ill patients, including placebo-controlled trials during seasonal as well as pandemic influenza.
- Investigating alternative strategies to NAI monotherapy to increase antiviral potency and improve clinical outcomes.
- Research on immune-modulatory strategies in severe influenza, including corticosteroids and macrolides.
• A need for high quality data on the effectiveness of most aspects of supportive care related to influenza.

• A need to assess the roles of virologic factors (e.g. replication sites, duration and viral load levels) in larger numbers of patients (including critically ill patients) in causing severe disease and associated complications, linking them to clinical outcomes.

REMAP-CAP is not able to meet all of these requirements but is well suited to evaluate the effectiveness of antiviral therapies active against influenza, immune modulatory strategies and different aspects of supportive care. Identical or similar research questions would exist for any pandemic caused by an organism that was not influenza and REMAP-CAP has also similar capabilities in this scenario.

6.3. WHO endorsement

REMAP-CAP has been designated by the WHO as a Pandemic Special Study. Under this designation, it has been tasked with helping answer crucial questions during a declared pandemic, as listed above. This designation ensures that knowledge translation of clinical trial results can occur directly with policymakers and public health officials for rapid implementation around the globe. It ensures that results generated from REMAP-CAP during a declared pandemic can be translated in an efficient and transparent manner to benefit affected patients.

7. ADAPTATION OF REMAP-CAP DURING A PANDEMIC

This PATC supplements the Core Protocol during a pandemic including deactivation at the conclusion of a pandemic. Decisions regarding the operationalization of the Pandemic Appendix to the Core Protocol are made by the ITSC with advice from the PWG (see Section 8.1). The Appendix sets out all potential adaptations of the Core Protocol and unless otherwise specified, all other aspects of the Core Protocol remain active. Activation of the PATC will be advised to the DSMB with specification of the selected operational characteristics.
7.1. Objectives

The primary objective of this REMAP during a pandemic is to identify the effect of a range of interventions to improve outcome for adult patients admitted to hospital with acute illness due to suspected or proven pandemic infection, as defined by the pandemic primary endpoint.

The secondary objective is to determine the effect of a range of interventions on additional endpoints, including endpoints developed by the World Health Organization and adopted core outcome sets.

7.2. Study setting: definition of an ICU and relationship of setting to severity of illness

During the interpandemic period, the REMAP recruits only participants who are admitted to an ICU, and a combination of admission to ICU as well as provision of treatments to support failed organs is used to define severity and eligibility. During a pandemic, there are several factors that may influence the relationship between admission to an ICU and severity of illness. Firstly, there may be insufficient ICU beds available to care for all critically ill patients. This may result in provision of advanced organ support occurring in locations that do not usually provide ICU-level care. During a pandemic, such a location is referred to as a re-purposed ICU. However, a re-purposed ICU needs to be distinguished from a usual hospital ward that is capable of providing some forms of organ support, such as non-invasive ventilation. During a pandemic, there may be substantial delays in transferring a patient from an emergency department to either a ward or an ICU (or a re-purposed ICU).

Patients in an emergency department who have been accepted for admission to an ICU are regarded as being admitted to an ICU. Patients in an emergency department who have been accepted for admission to a ward are regarded as being admitted to a ward. Secondly, patients who are not critically ill may be treated on an ICU for reasons that are not related to severity of illness, such as access to single rooms to achieve objectives related to infection control and prevention. This can influence both admission as well as discharge practices. Thirdly, the threshold at which support for failed organs is provided may be influenced by infection control practices. For example, some forms of respiratory support
may be withheld because of concerns related to the risk that staff who are caring for patients may acquire the infection.

To minimize these issues, during a pandemic, the primary determinant of severity is the provision of ICU-level care, which can be interpreted in conjunction with the physical location in which care is being provided. Determination of severity may also take into account a decision to withhold some form of organ failure support that would otherwise have been provided. Where a definition of an ICU is needed, at sites at which the pandemic stratum (see below) has been activated, an area within the hospital that is repurposed so as to be able to deliver one or more of the qualifying organ failure supports specified in the Core Protocol (non-invasive ventilation, invasive ventilation, and vasopressor therapy) will meet the definition of an Intensive Care Unit. It is preferred in such circumstances that the patient is under the care of a specialist who is trained in the provision of critical care, but this is not an essential requirement. A respiratory or other ward that provides non-invasive ventilation (including oxygen therapy delivered by high flow nasal cannula) and continues to do so during a pandemic, will not, generally, meet the definition of an ICU, particularly if the patient is not under the care of a specialist who is trained in the provision of critical care.

In some DSAs, an exclusion criteria is applied to only permit enrollment during a time-window that commences with ICU admission. For the reasons noted above, this may be operationalized using a time-window, of the same duration, that commences with the provision of sustained organ failure support.

7.3. Eligibility criteria

Platform-level eligibility criteria may be modified if necessary to accommodate a published case definition, to align with criteria specified in guidelines, such as the ATS/IDSA guidelines on CAP\(^{16}\), or to accommodate necessary modifications to the online eligibility system used for enrollment. In previous epidemics of community-based infection, nosocomial acquisition has been well described. Relaxation of the requirement for community acquisition or organ failure criteria or both may be appropriate. In this regard, Version 2.0 of this Appendix modifies the organ failure support criteria so that these no longer apply as a platform-level inclusion criteria, permitting the enrollment of patients into the platform who are admitted
to hospital or an ICU, either with or without organ failure support criteria. In association with the removal of the organ failure requirement, the requirement for a patient to meet criteria for pneumonia may be replaced with a requirement for acute illness due to suspected or proven pandemic infection. All changes to eligibility criteria would apply only to patients in the pandemic stratum (see section 7.4).

As such, the modified platform-level inclusion and exclusion criteria are:

In order to be eligible to participate in the pandemic aspects of REMAP-CAP, a patient must meet the following criteria:

1. Adult patient admitted to hospital with acute illness due to suspected or proven pandemic infection

A potentially eligible patient who meets any of the following criteria will be excluded from participation in this trial:

1. Death is deemed to be imminent and inevitable during the next 24 hours AND one or more of the patient, substitute decision maker or attending physician are not committed to full active treatment
2. Patient is expected to be discharged from hospital today or tomorrow
3. More than 14 days have elapsed while admitted to hospital with symptoms of an acute illness due to suspected or proven pandemic infection
4. Previous participation in this REMAP within the last 90 days

This extension of the platform-level inclusion criteria can apply to patients admitted to an ICU or a ward. In association with the involvement of different clinical teams, the domains and interventions that are available for patients admitted to a ward compared with those admitted to an ICU are permitted to be, but do not have to be, different.

7.4. Pandemic stratum

7.4.1. Introduction

As outlined in the Core Protocol, a pre-specified stratum of the REMAP is the presence or absence of suspected or proven pandemic infection. This is maintained as a ‘passive
stratum’ during the interpandemic period that can become active during a pandemic. It consists of two exclusive strata categories: pandemic infection is neither suspected nor proven (PINSNP) and pandemic infection is either suspected or proven (PISOP) at baseline. At times when the PAiTc is not activated, i.e. during the interpandemic period, all participants are categorized as PINSNP.

7.4.2. Activation and deactivation of the PAiTc and PISOP stratum

In response to a pandemic (see section 8.1), the PISOP stratum is activated using a two-step process. First there is a decision of the ITSC to open the PISOP stratum for the platform. The second step is site-by-site activation of the PISOP stratum, requiring agreement of both the site and the Regional Coordinating Centre (RCC). This allows variation in activity of the pandemic infection to be accommodated with sites only open for PISOP recruitment when there is active pandemic infection locally. Switching-on of the stratum can occur at any time and expected to always be available with less than 24 hours lead time. The capacity to enroll patients into the PISOP stratum can be switched-off on a site-by-site basis, but the ITSC can switch off the PISOP stratum for all sites if it is believed that a pandemic is no longer ongoing. The REMAP applies a new and separate statistical model for participants in the PISOP stratum which can utilize, where appropriate, informative priors derived from pre-pandemic PINSNP participants.

It should be noted that for sites in which the pandemic stratum is open, that the REMAP allows for continued recruitment of patients into the REMAP who are in the PINSNP stratum. For example, during an influenza pandemic, PINSNP would include patients with infection that has been proven to be a non-pandemic strain of influenza. During a pandemic, patients who are in the PINSNP stratum continue to be analyzed using the interpandemic statistical model (see below). As such, there are two categories of PINSNP participants—those included during the interpandemic phase and those included during a pandemic. Both categories of patients contribute to the interpandemic model for all active domains.

The PAiTc is activated and deactivated for a site at the same time as the PISOP stratum is opened and closed. If a pandemic commences prior to ethical and governance approval of
the PAtC, the PISOP stratum can be activated using approvals for the Core Protocol, and the
PAtC would be activated as soon as ethical approval is obtained.

7.5. The pandemic statistical model

7.5.1. Introduction

The model that is active during the pandemic and includes only PISOP patients (for some or
all domains) is referred to as the pandemic model. The model that is active before (and
after) the pandemic, which includes PINSNP patients during the pandemic and may include
some PISOP patients for some domains, is referred to as the interpandemic model (see
Figure 2).

The pandemic model is only used for PISOP participants and only for those domains selected
by the ITSC. A PISOP patient can contribute to both the pandemic and interpandemic model
in different domains but each patient’s contribution to a model is mutually exclusive with
respect to each domain. The ITSC will select the domains to be included in the pandemic
model where a differential treatment effect is postulated in the presence of pandemic
infection or the need exists to learn about the outcome quickly, or both. The extension of
this platform-level entry criteria does not apply to domains that are analyzed exclusively
within the interpandemic statistical model.
A consequence of the application of two separate statistical models is that treatment-by-treatment interactions can only be evaluated for those domains that are in the same model. The principal advantages of the use of two models are:

- that this is necessary where the pandemic model requires a different primary end-point
- the platform is able to continue recruitment of patients with CAP who are neither suspected nor proven to have pandemic infection
- where appropriate informative priors can be included at commencement of the pandemic model
- where appropriate thresholds for a Statistical Trigger can be modified
- only those domains that are relevant to the pandemic are included within the pandemic model.

During the interpandemic period, it is intended that there may be some domains, for example the Ventilation Domain, that will utilize a separate domain-specific statistical model. It should be noted that during the interpandemic period, such a domain is not part of the interpandemic statistical model. During a pandemic any such domain would continue to be evaluated with its own domain-specific statistical model. During a pandemic, the operating characteristics of the domain-specific statistical model may be modified in the same way that the pandemic model is modified from the interpandemic model. For example, PISOP patients may be analyzed within a pandemic version of the domain specific statistical model utilizing a modified primary end-point, with application of informative priors derived from the interpandemic time period.

7.5.2. Pre-specification of trial parameter options

There are many clinical features of a respiratory pandemic that cannot be predicted in advance. For several parameters related to trial design and statistical analysis, this Appendix pre-specifies a range of options from which the actual modifications will be chosen at the commencement of a pandemic. The appendix provides guidance regarding the principles that would guide selection from within the available options and often provides the planned default option. The provision of flexibility regarding limited aspects of trial design provides the capacity to tailor aspects of the trial to the characteristics of the pandemic. For these decisions, the ITSC has decision-making responsibility, with advice from the PWG. These
decisions would be regarded as operational and, unless otherwise specified (5.3.4), will be made prior to the conduct of the first adaptive analysis using the pandemic model and would be made only from within the range of options pre-specified in this Appendix. It is not intended that the selected parameters would be modified in any way during the pandemic unless advised to do so by the DSMB. The selected trial parameters would be placed in the public domain, on the study website, and provided as an update to participating sites and relevant ethical review bodies prior to the first adaptive analysis of the PISOP stratum. These parameters are set out in a document termed Operating Characteristics and this document applies to both REMAP-CAP core protocol documents as well as the REMAP-COVID Core Protocol, to the extent that is necessary. It is also acknowledged that specification in a new domain, may influence a pre-existing domain, such as specification of evaluation of an interaction between domains. In this situation, the DSA for the pre-existing domain will not necessarily be amended immediately with the most recently approved or amended DSA serving to specify the inter-relationship between the two domains.

7.5.3. Application of other strata specified in the Core Protocol in the pandemic model

The shock strata may be applied to the PISOP stratum. The default position is that the shock strata will not be applied to the PISOP stratum.

If the pandemic is caused by a novel strain of influenza the pre-existing influenza strata is not applied in the pandemic model. For PINSNP patients, the “influenza present” stratum would continue to apply and would be used to differentiate patients infected with a non-pandemic strain of influenza from patients in the “influenza not present” stratum. Membership of PISOP and influenza present stratum are mutually exclusive. It is anticipated that the influenza present stratum would apply only to patients with infection due to a proven non-pandemic strain of influenza at baseline. Patients in whom influenza was suspected, but the results of strain-specific diagnostic tests were not available at the time of assessment of eligibility, will be allocated to the PISOP stratum at sites where the stratum is active.
7.5.4. Strata within the PISOP stratum

A strata applied within the PISOP stratum is the confirmation status of pandemic infection, defined in two categories, present or absent, based on the results of microbiological tests for the pandemic organism. Any patient with clinically suspected pandemic infection who is not tested or the result is not yet known will be deemed positive.

The availability and interpretation of microbiological tests are likely to change during the pandemic and an operational document will be used to specify how different tests are interpreted. It is noted that pandemic infection confirmed status is defined by the final results of testing for the pandemic organism which may include analysis of samples collected after enrollment where it is reasonable to presume that the sample reflected pandemic infection status at time of enrollment.

The sensitivity of microbiological testing for the pandemic organism may not be known at the beginning or even during the pandemic. It is anticipated that initial analysis of the pandemic model will occur without application of this pandemic confirmation status strata but this would be applied when there was sufficient confidence about the operating characteristics of diagnostic tests in patients who are critically ill. If the pandemic confirmation status is applied, the probabilities derived from patients who have confirmed pandemic infection will be used to determine the RAR proportions for patients receiving treatment assignments in the pandemic specific domains within the PISOP stratum.

Borrowing is permitted between the pandemic infection confirmed stratum and the pandemic infection not present stratum, using the methods outlined in the Core Protocol (with gamma = 0.15).

If eligibility criteria were modified to allow inclusion of a wider spectrum of illness severity, two or more states, related to severity of illness, may be applied within the PISOP stratum to distinguish current versus extended severity of illness.

7.5.5. States within the PISOP stratum

The Core Protocol defines ‘state’ as a set of mutually exclusive and exhaustive categories, defined by characteristics of a patient within the REMAP, that are capable of changing over
time for a single patient at different time-points during the patient’s participation in the REMAP (i.e. they can be dynamic). During the pandemic, and only for patients in the PISOP stratum, two or more states may be defined, depending on illness severity. The default categorization of severity will be into two categories:

- Severe State, defined by receiving organ failure support in an ICU
- Moderate State, defined by
 - Not being admitted to an ICU, or
 - Admitted to an ICU but not receiving organ failure support

Organ failure supports that qualify a patient as severe are aligned to those that previously determined eligibility to the platform (i.e. the Severe State corresponds to the previous platform eligibility criteria). These criteria are:

- Provision of invasive mechanical ventilation
- Provision of non-invasive mechanical ventilation (including high flow nasal cannula with a flow rate of at least 30 litres per minutes and a fractional inspired oxygen concentration of 40% or higher)
- Receiving infusion of vasopressor or inotropes or both

Where states are defined, eligibility for domains or selected interventions within a domain, may be specified according to state. As such, a domain may be available in one or more states. Where a domain is available in two or more states, the interventions available in that domain in each state are permitted to vary. States can also be utilized within the statistical model to define the unit-of-analysis, with declaration of Platform Conclusions, independently in one or more states, with borrowing permitted between states.

A single patient can move between states, one or more times, during a period of time which the patient is potentially eligible within the REMAP. For the purposes of assessment of eligibility for one or more domains, state is ‘instantaneous’ as at the time of that assessment. A patient who has previously received non-invasive ventilation or an infusion of vasopressor or inotrope or both, but is not receiving either of those therapies at time of assessment is deemed to be in the Moderate State. A patient who has been in the Severe State, as a consequence of receiving invasive mechanical ventilation in an ICU, cannot re-
enter the Moderate State for the purposes of assessment of eligibility. A patient who receives an assignment in the REMAP while in the Severe State cannot receive any subsequent assignments in the Moderate State. Where trial related processes, such as reveal of assignment or obtaining consent, create a time gap between initial assessment of eligibility and awareness of the patient’s assignment, the state in which the patient is analyzed is that which occurred at the time of assessment, not the time of reveal of the assignment.

A patient enrolled while in the Moderate State, if reassessed for eligibility for additional domains having progressed to the Severe State, may have new microbiological information that has accumulated during this interval of time. This could result in a patient with suspected pandemic infection having information that results in pandemic infection being excluded, at the time of reassessment. In this situation, the patient is analyzed in the pandemic model, as enrolled, in the Moderate State and is not eligible for enrollment in new domains in the Severe State (including domains evaluated in the interpandemic model). It is also noted that, for a patient who is enrolled in both states, that other time-varying baseline variables may have changed between each enrolment. For such patients, potentially time-varying baseline variables will be collected in reference to enrolment in the Moderate State and again in reference to enrolment in the Severe State.

7.5.6 Domains incorporated in the pandemic model and use of informative priors derived from the interpandemic model

The domains that will be included within the pandemic model will be determined at the onset of a pandemic by the ITSC with advice from the PWG. Where appropriate and prior to the first adaptive analysis that is undertaken after activation of the PATC, informative priors, derived from the interpandemic model (comprising patients enrolled in the REMAP prior to the pandemic), may be applied. If informative priors are applied, this is done by the Statistical Analysis Committee (SAC) who review the frequent adaptive analyses (and communicate these results to the DSMB on a regular basis). This will occur without knowledge of the values of the priors by the ITSC or any other investigator. The amount of influence that priors apply and how quickly priors are applied in combination with accruing new data will be specified by the ITSC. Coding that specifies the weighting of priors will be
done by statisticians who are separate to the SAC and blind to results from adaptive analyses. With regard to selection of domains and the use of informative priors, the following principles will be applied.

7.5.6.1. Non-influenza pandemic organism

If the pandemic organism is not influenza, the following domains are intended to be included within the pandemic model:

- Corticosteroid Domain, without application of informative priors.
- Macrolide Duration Domain, without application of informative priors.
- New domains, as appropriate for the pandemic organism, without application of informative priors.

The Influenza Antiviral Domain (which includes only antiviral agents active against influenza) would not be applied in the pandemic model. It is noted that a patient at baseline could have suspected influenza and suspected pandemic infection which could lead to enrollment in the influenza domain (evaluated in the interpandemic model) and enrollment in other domains (evaluated in the pandemic model). It is not anticipated that the Antibiotic Domain is evaluated in the pandemic model, though this may be revised if the pandemic was caused by a bacterial pathogen. In this situation only those antibiotics that are known to be active against the pandemic organism would be available within the Antibiotic Domain for patients in the PISOP stratum.

7.5.6.2. Influenza pandemic

If the pandemic organism is influenza, the following domains are intended to be included within the pandemic model:

- Corticosteroid Domain, using informative priors derived from the influenza present stratum.
- Antiviral domain, using informative priors derived from the influenza positive stratum but with exclusion of any antiviral interventions that are clinically inappropriate because of the resistance profile of the pandemic strain of influenza. If there were no antiviral agents to which the pandemic strain of influenza was susceptible the Antiviral domain would not be applied in the PISOP stratum. During the pandemic if the pandemic strain of influenza
acquired resistance to antiviral agents in the Antiviral Domain, these agents would be withdrawn from the domain at affected sites.

- Macrolide Duration Domain using informative priors derived from the unit-of-analysis of the Macrolide Duration Domain in the interpandemic model.
- New domains, as appropriate, without application of informative priors.

A number of other domains, related to organ failure support may be operative at the time of a pandemic. Domains such as oxygen saturation and hemodynamic targets would be expected to remain active during a pandemic. The default plan is that during a pandemic, patients in the PISOP and PINSNP strata will be eligible to receive an assignment in these domains and will be analyzed in the interpandemic model which will continue to be analyzed for statistical triggers and platform conclusions. Patients with pandemic infection will have their treatment assignments in such domains weighted according to RAR as specified by the interpandemic model which will continue to be updated during a pandemic.

The ventilation domain, which utilizes a statistical model that applies only to that domain, is expected to continue during a pandemic. If appropriate, the pandemic strata may be applied to this domain. If so, the PISOP stratum would apply informative priors.

Any new domain that is initiated during a pandemic will be submitted for ethical review and require ethical approval prior to commencement.

7.5.7. Use of informative priors derived from information available from outside the REMAP

The default position is that informative priors derived from information that is external to the REMAP will not be utilized. However, if appropriate, based on high quality evidence, informative priors may be applied. The decision to apply informative priors lies with the ITSC and must involve consultation with relevant external stakeholders, the DSMB, and appropriate statistical advice regarding the potential implications for the use of informative priors.
7.6. Endpoints

7.6.1. Pandemic primary endpoint

Specified domains, for patients in the PISOP stratum, will be analyzed using a separate statistical model, for which the primary endpoint is called the “pandemic primary endpoint”. The default pandemic primary endpoint will be an ordinal scale that is a composite endpoint that comprises mortality during the acute hospital admission and the number of whole and part study days for which the patient is alive and not requiring organ failure support while admitted to an ICU up until the end of study day 21. All patients who die before discharge from an acute hospital, irrespective of whether this occurs before or after D21, will be coded as –1 day. All patients who never receive organ failure support while admitted to an ICU will be coded as 22. Patients who die between D21 and discharge from an acute hospital will be updated at the time of the next adaptive analysis. All whole and part days after discharge from an acute hospital and before D21 will be counted as being not admitted to an ICU. Hospital readmission that included a new admission to ICU between first discharge from an acute hospital and D21 will not contribute to the primary end-point.

If appropriate, based on an understanding of clinical and biological factors, as well as operational factors, an alternative pandemic primary end-point may be specified at the time of activation of the PATC or at any time prior to the first interim analysis using the pandemic statistical model. Other possible primary end-points include days alive and outside the ICU with alternative durations of follow up or the use of an alternative composite based on admission to ICU. The pandemic primary endpoint will be used for the adaptive analyses that inform the RAR and for Statistical Triggers.

If the primary end-point includes a time-based outcome measure, assignment to one or more domains will occur at different time-points if the patient receives assignments in one or more domains while in the Moderate State and one or more domains in the Severe State. The commencement of the period of observation commences at the time of assignment, which can lead to the same patient having different values for different domains, as determined by the state in which enrollment occurred. This can be accommodated because there are separate statistical models for each state. Where a patient is eligible for two or
more domains in a state, assignment can only occur at a single time-point, i.e. it is not possible to have more than one time of assignment for different domains in the same state.

7.6.2. Secondary endpoints

All secondary endpoints that are specified in the Core Protocol and active DSAs will continue to be active. The primary end-point specified in the Core Protocol (all-cause mortality at day 90) is a secondary end-point in the PISOP stratum.

7.7. Principles of the statistical analysis

7.7.1. Adaptive analyses

Adaptive analyses may be conducted more frequently and with varying cadence during a pandemic. For analyses conducted in the pandemic model and the PISOP stratum of the ventilation model, data from all available patients will be utilized using, where appropriate, modelling to impute missing data. Adaptive analyses may be conducted at different frequency for the PISOP and PINSNP stratum.

7.7.2. Response adaptive randomization

For PISOP patients, RAR proportions for domains that are analyzed using the pandemic model will be derived from the pandemic model and the RAR proportions for domains that are analyzed using the interpandemic model will be derived from the interpandemic model. For PINSNP patients, the RAR proportions for all qualifying domains will be derived from the interpandemic model.

If feasible, the option of allowing sites to start with imbalanced RAR proportions may be utilized. During a pandemic, issues related to equipoise for sites to participate may be facilitated by allowing sites to select from a range of starting RAR proportions that are imbalanced. Being able to implement this would be dependent on logistic feasibility as well as evaluation to exclude any adverse impact on inference.

Within the PISOP stratum, and only for domains with five or more interventions, the minimum RAR proportion may be decreased to less than 10% but will not be decreased to less than 5%.
7.7.3. Unit-of-analysis

7.7.3.1. Application of additional strata

Patients within the PISOP stratum may be further stratified dependent on whether pandemic infection is confirmed or not confirmed by microbiological testing. Additional strata may be applied and this can be specified in a DSA. Any or all of these strata can be utilized to determine eligibility for a domain or an intervention within a domain. These strata can also be used to define a unit-of-analysis in the pandemic statistical model.

7.7.3.2. Application of state

The state, at time of first enrollment, can also be used to determine eligibility or be used to define a unit-of-analysis or both. Where specified in the statistical model, the treatment effect of an intervention is allowed to vary between different states. A Bayesian Hierarchical Model (BHM) is used for all treatment-by-state interactions. In the BHM a hyperprior is used for the differing treatment effects across states. The standard deviation of the hyperprior, gamma, is a modelling starting estimate for the variation in the magnitude of the difference in treatment effects between states. By default, the starting estimate of the difference is zero. The gamma parameter influences the extent to which the treatment effect of interventions is permitted to vary between states. At the commencement of a model, the gamma parameter must be set, for each domain-state pair.

In this REMAP, only three options are permitted with respect to specifying the gamma parameter for each domain-state pair. Firstly, gamma may be set to zero. The effect of this is that treatment effect of an intervention is assumed proportional between specified states. The unit-of-analysis is not sub-divided according to state. If gamma is set to zero for all states for a domain, the unit of analysis is all patients randomized in that domain. Secondly, and at the opposite extreme, gamma can be set to infinity. In this situation treatment effect is evaluated separately and independently in each state (with no borrowing between states). Thirdly, gamma may be set to a defined number between zero and infinity. This parameter value cannot be varied for different domain-state pairs, a global REMAP value has been selected. This specified value for gamma places a constraint on the variance of the difference in treatment effect in different states but permits the model to
estimate treatment effect for patients enrolled in one state by borrowing from patients enrolled in one or more adjacent states. Borrowing occurs to the extent that it is supported by the accumulated data, but the setting of gamma influences the amount of borrowing and how quickly borrowing is able to occur. The value of gamma that has been chosen has been determined by simulations to achieve a compromise between type I and type II error in baseline scenarios that assume either equivalence or superiority. Where a value for gamma is specified in the pandemic statistical model, in this REMAP the value of gamma will be 0.15.

A patient who is enrolled in a defined state, may have a clinical course that evolves with the patient entering a new state. Progression from one state, to another, may trigger eligibility for one or more domains. Where this occurs and the change in state defines a new unit-of-analysis, the RAR proportions may be different in each state. In this situation the RAR proportions that are relevant to that patient’s state will be applied. In this regard, randomization to one or more domains in an initial state will occur, using RAR proportions that apply to that state with a separate subsequent randomization to one or more domains occurring if the patient enters a new state, with RAR proportions that apply to that state. When a new state commences there may be insufficient patients to determine valid RAR proportions for that domain in the new state. In this situation either RAR proportions are balanced or RAR proportions from an adjacent state are applied (unless otherwise specified in a DSA).

The RAR proportions that apply when state is used to define a unit-of-analysis are derived from all patients who receive an assignment in a domain in that state, irrespective of whether the patient was assigned an intervention in a different domain in a different state.

7.7.3.3. Analyses for combinations of therapies

Unless otherwise specified in a DSA, a Platform Conclusion can be reached for combinations of treatments that are being evaluated within the platform. This applies to interventions within a domain as well as interventions in different domains. As such, all of the following can be reported as Platform Conclusions: an interaction between interventions in different domains and that the treatment effect of more than one active intervention is different to a
no treatment (standard of care) intervention. A domain that contains two or more treatments, each of which is assigned against a no treatment control in a factorial manner (i.e. the N x N table of yes / no for n treatments) will be analyzed as an N x N factorial. Structuring the analysis in this way allows the model to learn more quickly about the effectiveness of each treatment, recognizing common treatment exposure across intervention assignments.

7.7.4. Thresholds for statistical triggers

7.7.4.1. Introduction

The Core Protocol specifies thresholds for Statistical Triggers that apply to superiority, inferiority, and equivalence. For PISOP patients, different thresholds for Statistical Triggers may apply during a pandemic. The decision to modify a statistical threshold will be made by the ITSC prior to the first adaptive analysis of the pandemic model. Different thresholds may be applied to different domains. Thresholds can also be specified that are asymmetric for example less stringent for inferiority than superiority. Factors that the ITSC will take into account in considering whether to modify a threshold include whether the interventions being evaluated are comparative effectiveness options (i.e. interventions that are available as part of standard care and available outside the platform) or experimental interventions with uncertain safety and risk profile that may be available only within the platform.

All decisions regarding thresholds for Statistical Triggers will be communicated to participating sites and placed in the public domain on the study website. Once specified, thresholds cannot be modified unless recommended by the DSMB.

The default thresholds are outlined in the following sections.

7.7.4.2. Intervention Superiority Statistical Trigger

At any adaptive analysis, if a single intervention has at least a 0.99 posterior probability of being a member of the optimal regimen, for that unit-of-analysis, then that intervention will be deemed as being superior to all other interventions in that domain in that target population.
The declaration of a Platform Conclusion by the DSMB for superiority will result in application of 100% RAR (see section 7.6.4). Following implementation of 100% RAR, the posterior probability will continue to be updated and evaluated by the DSMB who are empowered to act if they have concerns regarding the validity of a Platform Conclusion.

- Intervention Efficacy Statistical Trigger

For any domain that has (or had) a non-active control intervention, statistical triggers for efficacy of other interventions can be determined. At any adaptive analysis, if a single intervention has at least a 0.99 posterior probability of being superior to the inactive control intervention, for that unit-of-analysis, then that intervention will be deemed as being effective in that domain in that target population. At any adaptive analysis, if a single intervention has a greater than 90% probability of being harmful, compared to an inactive control intervention, for that unit-of-analysis, then the intervention will be deemed as being harmful in that domain in that target population.

The declaration of a Platform Conclusion by the DSMB for efficacy may not result in any actions and may occur after the non-active intervention has been removed. This Platform Conclusion mathematically would occur simultaneously to Superiority in a 2-intervention domain. If a determination of efficacy for an intervention with a currently randomized non-active control then the non-active control should be dropped and the RAR set to 0. In contrast, declaration of a Platform Conclusion for harm will result in removal of that intervention from the platform for that unit-of-analysis, together with Public Disclosure.

7.7.4.3. Intervention Inferiority Statistical Trigger

At any adaptive analysis, if a single intervention has less than a 0.01 posterior probability of being a member of the optimal regimen, for a unit-of-analysis, then that intervention will be deemed as being inferior to other interventions in the domain for that target population. The 0.01 threshold is reduced as a function of how many units-of-analysis are available for the inferiority calculation (divided by the number of units minus 1). An asymmetrical inferiority statistical trigger may be set, particularly if an active intervention was being evaluated against an intervention that specifies no active treatment in that domain.
7.7.4.4. Equivalence and futility

The equivalence boundary (delta) for different endpoints selected for the PISOP stratum may be changed depending on the clinical impact of the delta for the chosen endpoint. The default delta for the Core Protocol will be used to select clinically similar effects on the chosen primary endpoint. If a mortality or 21-day ICU- or organ support-free day endpoint is selected the 20% proportional odds equivalency delta will be the default.

Alternatively, a DSA may specify a futility boundary (delta) with respect to the primary end-point. For the pandemic primary end-point, the default futility boundary for an intervention will be set as a posterior probability of less than 0.05 for at least a 20% odds-ratio improvement. This rule corresponds to the one-sided equivalency region.

7.7.4.5. Statistical thresholds for early phase interventions

During the pandemic there may be need to test multiple candidate interventions that are at an early phase of development, identifying those interventions that are most promising to be retained within the platform. Such interventions may be evaluated after a fixed recruitment against a ‘stop-go’ criteria for retention, and expansion, within the platform. The default threshold for retention and expansion of an intervention will be a posterior probability of 0.5 or more that there is at least a 30% benefit in odds ratio.

7.7.5. Actions when a Statistical Trigger is achieved

The actions that occur when a statistical trigger is achieved are those which are specified in the Core Protocol. At the time of a Platform Conclusion that is relevant to public health or clinical management of patients with suspected or proven pandemic infection, the DSMB and ITSC are empowered to liaise directly with relevant public health authorities prior to public presentation or publication of results.

7.7.6. Pre-specified subgroup analyses after achievement of a platform conclusion

Pre-specified subgroup analyses that will be conducted after a Platform Conclusion are outlined in each DSA. If a DSA does not specify a sub-group analysis related to the pandemic strata such analysis is permitted if the PISOP stratum has been open.
7.7.7. Closure of the PISOP stratum and incorporation of data from pandemic statistical model into the interpanademic statistical model

The ITSC is permitted to close or suspend the PISOP stratum. At this time, evaluation of new patients within the pandemic model will cease. After the permanent closure of the PISOP stratum, the information related to domains that have been analyzed for PISOP patients within the pandemic model will be added to the interpanademic model retaining, if appropriate, a co-variate or stratum status, to reflect that the patient was enrolled in the PISOP stratum.

7.7.8. Domains with their own statistical model

It is intended that domains with their own statistical model (e.g. as anticipated for the ventilation domain) will continue to be analyzed using the separate statistical model. If the PISOP stratum was applied to such a domain it is intended that a pandemic version of the separate model would be commenced and enroll only patients in the PISOP stratum. This model would utilize the pandemic primary end-point and would use informative priors derived from the preceding model. An operational decision may be made to apply an end-point that is different to the pandemic primary end-point in a domain with its own model.

8. GOVERNANCE, ETHICAL, AND OPERATIONAL CONSIDERATIONS IN A PANDEMIC

8.1. Decision to activate pandemic stratum

The decision to open the pandemic stratum lies with the ITSC. In deciding to activate the pandemic stratum the ITSC should take into account, but is not dependent on, declaration of a pandemic by the WHO and decisions about pandemic activation by regional pandemic preparedness consortia.

The decision to open will be communicated to RCCs and participating sites as an operational document. Each RCC will maintain a log of the dates for which sites were activated for the PISOP stratum.
8.2. Safety Monitoring and Reporting

During the interpandemic period, the platform evaluates solely or predominantly interventions that are in widespread clinical use for severe CAP and for which the safety profile of the intervention is well described. During a pandemic, the platform may evaluate therapeutic agents that have been repurposed or are an Investigational Medical Product. Such therapeutic agents may not have an established safety profile or an established safety profile when used in critically ill patients. Where an intervention is not regarded as having an established safety profile, this will be specified in the DSA. For this type of interventions more specific or more detailed SAE reporting will be required that is specified in the Core Protocol, as follows.

This may include Adverse Events of Special Interest (AESI). SAEs that might be attributable to specific interventions are included as secondary endpoints in each DSA but are recorded only for participants who are enrolled in that domain. If more detailed SAE or AE/AESI reporting is required for an intervention, then this additional safety reporting requirement will be specified in the relevant DSA and recorded only for participants who are enrolled in that domain. The following arrangements apply to such

When submitting the SAE form the local site PI should determine if the SAE is attributable to one or more study interventions in this trial. The local PI will assess if it is possible, probable, or certain that there is a direct link between a trial intervention and the SAE (a Serious Adverse Drug Reaction, SADR).

The regional / country project manager should review the SAE form for completeness and query any missing data with the site. Preliminary SAE report forms should be submitted as soon as the site becomes aware. It is recognised that follow-up information may be available later.

The regional lead investigator, or medically qualified designee, should review the SAE to assess expectedness and causality. The regional lead investigator or delegate cannot downgrade the site’s assessment of expectedness and causality. The following requirements are specified:
The regional Sponsor should be made aware of the SAE within 24 hours of the SAE being reported.

All SAEs must be followed-up until resolution, or end of trial if this is sooner.

SAEs will be reported to the relevant ethics committee and competent authority according to local regulations and requirements.

All SAEs, pooled from all regions, will be reported to the DSMB at intervals agreed by the REMAP-CAP investigators and the DSMB. This may vary depending on the specific intervention being evaluated. The DSMB may request additional specialist review of safety data for certain interventions.

If drugs have been supplied by a pharmaceutical company, then reporting of safety data to the company may be required. The details of this reporting will be included in individual Safety Data Exchange Agreements (SDEA).

On an annual basis a Developmental Safety Update Report (DSUR) will be produced including all SAE data from all regions in REMAP-CAP and will be submitted to the relevant competent authorities as required. This may be shared with pharmaceutical companies as part of the SDEA.

If an SAE is determined to be unexpected (not previously described in the Summary of Product Characteristics / Investigator Brochure / Protocol) and related to the study medication then it is considered a SUSAR. In these cases, the following steps should also be undertaken, in addition the performing the steps described above for handling SAEs:

- The relevant competent authorities and ethics committees should be notified of the SUSAR by the Sponsor or designee in each region.
- A SUSAR that results in death or is life-threatening, should be reported to the aforementioned bodies within 7 days of the Sponsor (or designee) becoming aware of the event. Further relevant information should be sought and a follow-up report completed as soon as possible and submitted within 8 additional days.

A SUSAR which does not result in death or is not life-threatening should be reported within 15 days of the Sponsor (or designee) becoming aware of the event or in accordance with the local regulatory requirements. Further relevant information should be given as soon as
possible. The regional / country project managers should notify all investigators at all sites that a SUSAR has occurred. The REMAP-CAP DSMB should be notified that a SUSAR has occurred.

It may be necessary to take appropriate urgent safety measures in order to protect research participants against any immediate hazard to their health or safety, without prior authorisation from a regulatory body. If this occurs the regulatory bodies should be notified as soon as possible and in any event within three days, in the form of a substantial amendment, that such measures have been taken and the reasons why.

SAEs reported will be coded using the currently available version of the Medical Dictionary for Regulatory Activities (MedDRA). Coding will be to lowest level terms. The preferred term, and the primary system organ class will be listed. Summaries of all SAEs by treatment group will include:

- The number and percentage of patients with at least 1 SAE by system organ class and preferred term
- The number of SAEs by relationship to treatment (related, not related), presented by system organ class and preferred term

8.3. Data collection and management

A pandemic is likely to result in a substantial increase in clinical workload for sites participating in REMAP-CAP. This is acknowledged by the REMAP-CAP management, as is the primacy of patient care. The importance of contemporaneous data collection, particularly with respect to variables that are needed for adaptive analyses will be emphasized to sites. RCCs will seek to support sites as much as possible, including with requests to healthcare systems, public health authorities, and funding agencies to provide resources that allow sites to maintain data collection that is timely and complete.

8.4. Role of the DSMB

In a pandemic the role of the DSMB is modified, taking into account the public health importance of clinical evidence during a pandemic. In meeting the requirements of their Charter during a pandemic the DSMB should consider issues of public health in addition to
the well-being of participants and the scientific integrity of the platform. The in-principle views of the DSMB may be obtained by the ITSC with regard to the setting of modified thresholds for statistical triggers.

While the PISOP stratum is open the DSMB is also permitted to liaise with public health authorities, regulatory authorities, or the DSMBs of trials evaluating the same or similar interventions regarding the results and appropriate interpretation of adaptive analyses in keeping with prevailing international standards. If the DSMB communicates with external groups the ITSC may be informed that such communication has occurred but the content of that communication may remain confidential between the DSMB and the relevant group. The DSMB may recommend to the ITSC that public reporting of posterior probabilities that have not attained a threshold for a Statistical Trigger should occur.

The workload of the DSMB may be substantial during a pandemic and, if requested by the DSMB, the ITSC will appoint additional members.

8.5. Communication of trial results

Any Platform Conclusion that is relevant to public health that occurs during a pandemic will be presented or published as soon as possible, noting that additional work to report baseline status and secondary end-points will need to occur prior to presentation and publication of results.

- Funding of the trial

The trial is currently funded as described in the Core Protocol.

During the interpandemic period and during a pandemic, additional funding will be sought to provide resources for activities that exceed those that will be occurring during the interpandemic period. Possible sources of additional resources include, but are not limited to, healthcare systems, pharmaceutical companies, public health authorities, and local and international research funding bodies.

A section of the Core Protocol indicates that “the trial will not enter into a contract with a commercial organization unless the contract specifies that, among other clauses, “that all
data are owned by the trial and the commercial organization has no authority to access data”. This clause should not be interpreted as indicating that access to data by a commercial organization is not permitted. Such as access can be agreed, for example, by licensing access to data, if agreed by both a commercial partner and trial sponsors.

8.6. Monitoring

It is acknowledged that during a pandemic site monitoring may be delayed for logistical reasons. The operational monitoring plan may be updated to reflect issues that are specific to a pandemic. As outlined in Core Protocol, the DSMB will take into account intensity of monitoring and time of consideration of a Platform Conclusion. If appropriate, the contribution of data that has not been monitored as per the non-pandemic monitoring plan will be acknowledged in the public reporting of Platform Conclusions.
9. REFERENCES

Protocol Amendment to Pandemic Appendix to the Core Protocol

Summary of changes

REMAP-CAP: Randomized, Embedded, Multifactorial Adaptive Platform trial for Community-Acquired Pneumonia

REMAP-CAP Pandemic Appendix to Core Protocol Amendment Summary Version 1 dated 24 May 2020
TABLE OF CONTENTS

1. Current Versions of Protocol Documents .. 52
 1.1. The current versions of pandemic specific protocol documents: 52

2. Amendment 1 ... 52
 2.1. Summary of changes... 53
1. CURRENT VERSIONS OF PROTOCOL DOCUMENTS

1.1. The current versions of pandemic specific protocol documents:

- REMAP-CAP Core Protocol Version 3, dated 10 July 2019
- Pandemic Appendix to Core Version 1.1, dated 12 February 2020
- Domain-Specific Appendices
 - COVID-19 Antiviral Therapy Domain-Specific Appendix Version 2, dated 01 April 2020
 - COVID-19 Immune Modulation Domain-Specific Appendix Version 1, dated 11 March 2020

2. AMENDMENT 1

The Pandemic Appendix to the Core Protocol document underwent an amendment in May 2020. There are two broad objectives associated with this amendment. Firstly, some aspects of the Appendix were updated to reflect accumulated knowledge and experience of how the Appendix applies to the COVID-19 pandemic. Secondly, in some regions of the world a separate and new Core Protocol had been developed, termed REMAP-COVID, which combines elements of the REMAP-CAP Core Protocol with the Pandemic Appendix to the Core Protocol, has been developed, approved and implemented. The REMAP-COVID Core Protocol is used in countries and locations that were not participating in REMAP-CAP prior to the COVID-19 pandemic and where the only objective of the platform was to evaluate treatments in patients with proven or suspected COVID-19 infection. Patients enrolled at locations in which REMAP-COVID Core Protocol is approved, as well as patients enrolled at locations in which the REMAP-CAP Core Protocol and Pandemic Appendix to the Core Protocol is approved, are all analyzed in the same pandemic statistical model. This version of the Pandemic Appendix achieves alignment between both sets of core documents.
2.1. Summary of changes

<table>
<thead>
<tr>
<th>Section</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary Page 2</td>
<td>REMAP-CAP is an adaptive platform trial that evaluates multiple aspects of care of patients who are admitted to an Intensive Care Unit with severe Community Acquired Pneumonia. It is reasonable to presume that any pandemic respiratory infection of major significance to public health will manifest as severe Community Acquired Pneumonia with concomitant admission to an Intensive Care Unit. Previous pandemics and more localized outbreaks of respiratory emerging infections have resulted in severe Community Acquired Pneumonia and admission to an Intensive Care Unit.</td>
<td>REMAP-CAP is an adaptive platform trial that evaluates multiple aspects of care of patients who are admitted to an Intensive Care Unit (ICU) with severe Community Acquired Pneumonia. It is reasonable to presume that any pandemic respiratory infection of major significance to public health will manifest as severe Community Acquired Pneumonia with concomitant admission to an ICU. Previous pandemics and more localized outbreaks of respiratory emerging infections have resulted in severe Community Acquired Pneumonia (CAP) and admission to an Intensive Care Unit.</td>
<td>Administrative change</td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td>Admission to an ICU may occur at the time of first presentation to a hospital or may be preceded by admission to a non-ICU ward or floor. For patients admitted to a non-ICU ward there is an opportunity to intervene to prevent the development of severe CAP.</td>
<td>Definition updated to align with the REMAP-COVID Core protocol that enrolls patients who are hospitalized but not in an ICU</td>
</tr>
<tr>
<td>Summary Page 3</td>
<td>The objective of the Pandemic Appendix to the Core Protocol (PAtC) is to describe the adaptations to the Core Protocol that would apply during a pandemic, including how analyses of domains already operative during the interpandemic period as well as domains that are pandemic-specific, will be integrated during a pandemic.</td>
<td>The objective of the Pandemic Appendix to the Core Protocol (PAtC) is to describe the adaptations to the Core Protocol that would apply during a pandemic, including how analyses of domains already operative during the interpandemic period as well as domains that are pandemic-specific, will be integrated during a pandemic.</td>
<td>Administrative change</td>
</tr>
</tbody>
</table>

| | The primary objective of the REMAP during a pandemic is to identify the effect of a range of interventions to improve outcome for patients with severe Community | The primary objective of the REMAP during a pandemic is to identify the effect of a range of interventions to improve outcome for patients admitted to a hospital with | Definition updated to align with the REMAP-COVID Core protocol that enrolls patients who are |

The Pandemic Appendix to the Core Protocol also achieves alignment with a separate document, REMAP-COVID Core Protocol, which comprises only those elements of the Core Protocol of REMAP-CAP and the Pandemic Appendix that applies to the COVID-19 pandemic. For the COVID-19 pandemic, a site can utilize either the REMAP-CAP Core Protocol combined with the Pandemic Appendix to the Core Protocol, or REMAP-COVID Core Protocol. Both sets of documents specify identical methods and data requirements. Data derived from sites using either set of documents is analyzed in the same pandemic statistical model. A single site must use either REMAP-COVID Core Protocol or REMAP-CAP Core Protocol with this associated pandemic appendix.
Acquired Pneumonia, as defined by the pandemic primary end-point.	acute illness due to suspected or proven pandemic infection, as defined by the pandemic primary end-point.	hospitalized but not in an ICU
REMAP-CAP is a global trial examining the best treatments for community-acquired pneumonia. In the setting of a pandemic that causes pneumonia, some key aspects of the study will be changed to integrate new interventions into the trial, evaluate existing interventions within the trial specifically in patients with pandemic infection, alter trial governance, and provide time-critical data for public health. | REMAP-CAP is a global trial examining the best treatments for community-acquired pneumonia. In the setting of a pandemic that causes life-threatening respiratory infection, some key aspects of the study will be changed to integrate new interventions into the trial, evaluate existing interventions within the trial specifically in patients with pandemic infection, alter trial governance, and provide time-critical data for public health. | Updated to align with the REMAP-COVID Core protocol nomenclature. The disease of interest for both sets of core documents is acute illness due to suspected or proven COVID-19. A requirement for the presence of pneumonia no longer applies. |

<table>
<thead>
<tr>
<th>SECTION 3</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANDEMIC APPENDIX TO THE CORE PROTOCOL VERSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COVID-19 ANTIVIRAL DOMAIN GOVERNANCE</td>
<td>Original text</td>
<td>New Text</td>
<td>Reason</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>4.1. Members Page 9</td>
<td>Prof. Derek Angus</td>
<td>Prof. Derek Angus</td>
<td>Addition of investigator</td>
</tr>
<tr>
<td></td>
<td>Prof. Yaseen Arabi</td>
<td>Prof. Yaseen Arabi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Richard Beasley</td>
<td>Prof. Richard Beasley</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/Prof. Scott Berry</td>
<td>A/Prof. Scott Berry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Frank Brunkhorst</td>
<td>Prof. Frank Brunkhorst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Lennie Derde</td>
<td>Dr. Lennie Derde</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Robert Fowler</td>
<td>Dr. Robert Fowler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Anthony Gordon</td>
<td>Prof. Anthony Gordon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mr. Cameron Green</td>
<td>Mr. Cameron Green</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Ed Litton</td>
<td>Dr. Ed Litton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. John Marshall</td>
<td>Prof. John Marshall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Colin McArthur</td>
<td>Dr. Colin McArthur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Srinivas Murthy</td>
<td>A/Prof. Bryan McVerry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Alistair Nichol</td>
<td>Dr. Srinivas Murthy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ms. Jane Parker</td>
<td>Prof. Alistair Nichol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Kathy Rowan</td>
<td>Ms. Jane Parker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Tim Uyeki</td>
<td>Prof. Kathy Rowan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Steve Webb</td>
<td>Prof. Tim Uyeki</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Steve Webb</td>
<td></td>
</tr>
</tbody>
</table>
6.1 Introduction
Page 11

<table>
<thead>
<tr>
<th>BACKGROUND AND RATIONALE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>It is reasonable to presume that any pandemic respiratory infection of major significance to public health will manifest as severe Community Acquired Pneumonia (CAP) with concomitant admission to an Intensive Care Unit (ICU).</td>
</tr>
<tr>
<td></td>
<td>It is reasonable to presume that any pandemic respiratory infection of major significance to public health will manifest as life-threatening respiratory infection including Severe Acute Respiratory Illness and severe Community Acquired Pneumonia (CAP) with concomitant admission to hospital, and for some patients, admission to an Intensive Care Unit (ICU).</td>
</tr>
<tr>
<td></td>
<td>Updated to align with the REMAP-COVID Core protocol nomenclature</td>
</tr>
</tbody>
</table>
| One of the challenges associated with planning clinical trials during a pandemic is that the precise nature of the infecting organism, clinical consequences, and suitable interventions (particularly those that are pathogen-specific) cannot be reliably known in advance. Nevertheless, a range of scenarios can be anticipated and used to provide direction and guidance regarding the most appropriate research response. | One of the challenges associated with planning clinical trials during a pandemic is that the precise nature of the infecting organism, clinical consequences, and suitable interventions (particularly those that are pathogen-specific) cannot be reliably known in advance. The speed of clinical progression, from initial infection to life-threatening severe respiratory infection is another feature that cannot be reliably known in advance. It is likely that a proportion of patients will present with severe CAP but other patients may present to medical attention with illness that is less severe, but remain at risk of progression to severe illness. Patients who require hospital admission, but have less severe illness are a particularly important group, because early intervention at this stage of illness may prevent progression to life-
| | Updated to align with the REMAP-COVID Core protocol that enrolls patients who are hospitalized but not in an ICU |
threatening illness. It is also possible that proposed treatment interventions may have differential treatment effect depending on the level of illness severity at the time that treatment is commenced, including treatment effects that are divergent. Nevertheless, a range of scenarios can be anticipated and used to provide direction and guidance regarding the most appropriate research response.

The pandemic potential of a novel Coronavirus that causes pneumonia is not known. SARS-CoV-2 is the cause of a pandemic of severe respiratory disease (COVID-19), including pneumonia, that commenced in 2019.

It is highly likely that one or more research questions (in domains already approved during the interpandemic period) will be relevant specifically in patients with CAP caused by the pandemic infection.

It is highly likely that one or more research questions (in domains already approved during the interpandemic period) will be relevant specifically in patients with severe respiratory disease including pneumonia caused by the pandemic infection.

Furthermore, as the trial progresses during a pandemic the Data Safety Monitoring Board (DSMB) has access to information from adaptive analyses that may not achieve thresholds to allow reporting as a Platform Conclusion but may be relevant to public health which, under appropriate circumstances, can be shared with public health authorities and the DSMBs of other trials.

Furthermore, as the trial progresses during a pandemic the Data Safety Monitoring Board (DSMB) has access to information from adaptive analyses that may not achieve thresholds to allow reporting as a Platform Conclusion but may be relevant to public health which, under appropriate circumstances, can be shared with public health authorities and the DSMBs of other trials.

Updated to acknowledge that Coronaviruses can result in a pandemic.

Updated to align with the REMAP-COVID Core protocol nomenclature.

Updated to acknowledge that communication between DSMBs of different trials that are evaluating the same or similar interventions may be an important
<table>
<thead>
<tr>
<th>SECTION 7 ADAPTATION OF REMAP-CAP DURING A PANDEMIC</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Objectives Page 17</td>
<td>Blank</td>
<td>The primary objective of this REMAP during a pandemic is to identify the effect of a range of interventions to improve outcome for adult patients admitted to hospital with acute illness due to suspected or proven pandemic infection, as defined by the pandemic primary end-point. The secondary objective is to determine the effect of a range of interventions on additional endpoints, including endpoints developed by the World Health Organization and adopted core outcome sets.</td>
<td>Trial objectives updated to include an extended definition of the disease of interest and to incorporate collection of WHO recommended outcome measures as a secondary objective</td>
</tr>
<tr>
<td>7.2. Study setting: definition of an ICU and relationship of setting to severity of illness Page 18</td>
<td>Study setting: definition of an ICU During the interpandemic period, the REMAP recruits only participants who are admitted to an ICU. During a pandemic, there may be insufficient ICU beds available to care for all critically ill patients resulting in provision of advanced organ support occurring in locations other than an ICU.</td>
<td>Study setting: definition of an ICU and relationship of setting to severity of illness During the interpandemic period, the REMAP recruits only participants who are admitted to an ICU, and a combination of admission to ICU as well as provision of treatments to support failed organs is used to define severity and eligibility. During a pandemic, there are several factors that may influence the relationship</td>
<td>This section has been updated extensively as a consequence of practical experience with COVID-19. Definitions of both what constitutes an ICU and assumptions regarding a level of...</td>
</tr>
<tr>
<td>For sites at which the pandemic stratum (see below) has been activated, an area within the hospital that is able to deliver one or more of the qualifying organ failure supports specified in the Core Protocol (non-invasive ventilation, invasive ventilation, and vasopressor therapy) will meet the definition of an Intensive Care Unit. It is preferred in such circumstances that the patient is under the care of a specialist who is trained in the provision of critical care, but this is not an essential requirement.</td>
<td>between admission to an ICU and severity of illness. Firstly, there may be insufficient ICU beds available to care for all critically ill patients. This may result in provision of advanced organ support occurring in locations that do not usually provide ICU-level care. During a pandemic, such a location is referred to as a re-purposed ICU. However, a re-purposed ICU needs to be distinguished from a usual hospital ward that is capable of providing some forms of organ support, such as non-invasive ventilation. During a pandemic, there may be substantial delays in transferring a patient from an emergency department to either a ward or an ICU (or a re-purposed ICU). Patients in an emergency department who have been accepted for admission to an ICU are regarded as being admitted to an ICU. Patients in an emergency department who have been accepted for admission to a ward are regarded as being admitted to a ward. Secondly, patients who are not critically ill may be treated on an ICU for reasons that are not related to severity of illness, such as access to single rooms to achieve objectives related to infection control and prevention. This can influence both admission as well as discharge practices. Thirdly, the threshold at which support for failed organs is provided may be influenced by severity of illness that occurs in association with admission to an ICU are or have been important operational characteristics. These updates are needed to ensure adequate matching between intention of protocol documents and need for operational definitions that take into account changes in practice and policy in healthcare systems in which REMAP-CAP is active.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
by infection control practices. For example, some forms of respiratory support may be withheld because of concerns related to the risk that staff who are caring for patients may acquire the infection.

To minimize these issues, during a pandemic, the primary determinant of severity is the provision of ICU-level care, which can be interpreted in conjunction with the physical location in which care is being provided. Determination of severity may also take into account a decision to withhold some form of organ failure support that would otherwise have be provided. Where a definition of an ICU is needed, at sites at which the pandemic stratum (see below) has been activated, an area within the hospital that is repurposed so as to be able to deliver one or more of the qualifying organ failure supports specified in the Core Protocol (non-invasive ventilation, invasive ventilation, and vasopressor therapy) will meet the definition of an Intensive Care Unit. It is preferred in such circumstances that the patient is under the care of a specialist who is trained in the provision of critical care, but this is not an essential requirement. A respiratory or other ward that provides non-invasive ventilation (including oxygen therapy delivered by high flow nasal cannula) and continues to do so during a pandemic, will
not, generally, meet the definition of an ICU, particularly if the patient is not under the care of a specialist who is trained in the provision of critical care.

In some DSAs, an exclusion criteria is applied to only permit enrolment during a time-window that commences with ICU admission. For the reasons noted above, this may be operationalized using a time-window, of the same duration, that commences with the provision of sustained organ failure support.

| 7.3. Eligibility criteria | Platform-level eligibility criteria may be modified if necessary to accommodate a published case definition, to align with criteria specified in guidelines, such as the ATS/IDSA guidelines on CAP16, or to accommodate necessary modifications to the online eligibility system used for enrolment. In previous epidemics of community-based infection, nosocomial acquisition has been well described. Relaxation of the requirement for community acquisition or organ failure criteria or both may be appropriate. All changes to eligibility criteria would apply only to patients in the pandemic stratum (see section 7.3). | Platform-level eligibility criteria may be modified if necessary to accommodate a published case definition, to align with criteria specified in guidelines, such as the ATS/IDSA guidelines on CAP16, or to accommodate necessary modifications to the online eligibility system used for enrolment. In previous epidemics of community-based infection, nosocomial acquisition has been well described. Relaxation of the requirement for community acquisition or organ failure criteria or both may be appropriate. In this regard, Version 2.0 of this Appendix modifies the organ failure support criteria so that these no longer apply as a platform-level inclusion criteria, permitting the enrolment of patients into the platform who are admitted to hospital or an ICU, either with or without organ failure support criteria. In association with | Updated eligibility criteria to align with the REMAP-COVID Core protocol that enrolls patients who are hospitalized but not in an ICU and to align the nomenclature |
the removal of the organ failure requirement, the requirement for a patient to meet criteria for pneumonia may be replaced with a requirement for acute illness due to suspected or proven pandemic infection. All changes to eligibility criteria would apply only to patients in the pandemic stratum (see section 7.4).
As such, the modified platform-level inclusion and exclusion criteria are:
In order to be eligible to participate in the pandemic aspects of REMAP-CAP, a patient must meet the following criteria:
1. Adult patient admitted to hospital with acute illness due to suspected or proven pandemic infection
A potentially eligible patient who meets any of the following criteria will be excluded from participation in this trial:
1. Death is deemed to be imminent and inevitable during the next 24 hours AND one or more of the patient, substitute decision maker or attending physician are not committed to full active treatment
2. Patient is expected to be discharged from hospital today or tomorrow
| 7.5.1. Introduction Page 21 | A PISOP patient can contribute to both the pandemic and interpandemic model in different domains but each patient's contribution to a model is mutually exclusive with respect to each domain. The ITSC will select the domains to be included in the pandemic model where a differential treatment effect is postulated in the presence of pandemic infection or the need exists to learn about the outcome quickly, or both. | A PISOP patient can contribute to both the pandemic and interpandemic model in different domains but each patient’s contribution to a model is mutually exclusive with respect to each domain. The ITSC will select the domains to be included in the pandemic model where a differential treatment effect is postulated in the presence of pandemic infection or the need exists to learn about the outcome quickly, or both. The extension of this platform-level entry criteria does not apply to domains that are analyzed exclusively within the interpandemic statistical model. | Updated to improve clarity of disposition of patients and domains with respect to the interpandemic and the pandemic statistical models. |

3. More than 14 days have elapsed while admitted to hospital with symptoms of an acute illness due to suspected or proven pandemic infection
4. Previous participation in this REMAP within the last 90 days
This extension of the platform-level inclusion criteria can apply to patients admitted to an ICU or a ward. In association with the involvement of different clinical teams, the domains and interventions that are available for patients admitted to a ward compared with those admitted to an ICU are permitted to be, but do not have to be, different.
For example, PISOP patients may be analyzed within a pandemic version of the domain specific statistical model utilizing a modified primary end-point, with application of informative priors derived from the interpandemic time period.

7.5.2. Pre-specification of trial parameter options

| Page 22 | The selected trial parameters would be placed in the public domain, on the study website, and provided as an update to participating sites and relevant ethical review bodies prior to the first adaptive analysis of the PISOP stratum. | The selected trial parameters would be placed in the public domain, on the study website, and provided as an update to participating sites and relevant ethical review bodies prior to the first adaptive analysis of the PISOP stratum. These parameters are set out in a document termed Operating Characteristics and this document applies to both REMAP-CAP core protocol documents as well as the REMAP-COVID Core Protocol, to the extent that is necessary. It is also acknowledged that specification in a new domain, may influence a pre-existing domain, such as specification of evaluation of an interaction between domains. In this situation, the DSA for the pre-existing domain will not necessarily be amended immediately with the most recently approved or amended DSA serving to specify the inter-relationship between the two domains. | Updated to improve clarity regarding the role of the Operating Characteristics document |

For PINSNP patients, the “influenza present” stratum would continue to apply and would be used to differentiate patients infected with a non-pandemic infection.

Correction of acronym spelling error. PINSNP - Pandemic infection is...
in the pandemic model

Page 23

<table>
<thead>
<tr>
<th>in the pandemic model</th>
<th>strain of influenza from patients in the “influenza not present” stratum.</th>
<th>strain of influenza from patients in the “influenza not present” stratum.</th>
<th>neither suspected nor proven</th>
</tr>
</thead>
</table>

Page 24

| If eligibility criteria were modified to allow inclusion of a wider spectrum of illness severity, an additional strata may be applied within the PISOP stratum to distinguish current versus extended severity of illness. | If eligibility criteria were modified to allow inclusion of a wider spectrum of illness severity, **two or more states**, related to severity of illness, may be applied within the PISOP stratum to distinguish current versus extended severity of illness. | The possibility of enrolling patients with a wider spectrum of illness severity, i.e. patients with less severe illness, was acknowledged in the previous version but this should have identified the dynamic nature of severity of illness, i.e. a state not a strata. |

7.5.5. States within the PISOP stratum

Page 24

| Blank | The Core Protocol defines ‘state’ as a set of mutually exclusive and exhaustive categories, defined by characteristics of a patient within the REMAP, that are capable of changing over time for a single patient at different time-points during the patient’s participation in the REMAP (i.e. they can be dynamic). During the pandemic, and only for patients in the PISOP stratum, two or more states may be defined, depending on illness severity. The default categorization of severity will be into two categories: | New paragraph that recapitulates the definition of ‘state’ from the Core Protocol and defines two states that will apply to PISOP patients during this pandemic. Added to align with the REMAP-COVID Core protocol |

CONFIDENTIAL
| • Severe State, defined by receiving organ failure support in an ICU |
| • Moderate State, defined by |
| o Not being admitted to an ICU, or |
| o Admitted to an ICU but not receiving organ failure support |
| Organ failure supports that qualify a patient as severe are aligned to those that previously determined eligibility to the platform (i.e. the Severe State corresponds to the previous platform eligibility criteria). These criteria are: |
| • Provision of invasive mechanical ventilation |
| • Provision of non-invasive mechanical ventilation (including high flow nasal cannula with a flow rate of at least 30 litres per minutes and a fractional inspired oxygen concentration of 40% or higher) |
| • Receiving infusion of vasopressor or inotropes or both |
| Where states are defined, eligibility for domains or selected interventions within a domain, may be specified according to state. As such, a domain may be available in one or more states. Where a domain is available in two or more states, the interventions available in that domain in each state are permitted to vary. States can also be utilized within the statistical model to define the unit-of-analysis, with declaration of Platform Conclusions,
A single patient can move between states, one or more times, during a period of time which the patient is potentially eligible within the REMAP. For the purposes of assessment of eligibility for one or more domains, state is ‘instantaneous’ as at the time of that assessment.

A patient who has previously received non-invasive ventilation or an infusion of vasopressor or inotrope or both, but is not receiving either of those therapies at time of assessment is deemed to be in the Moderate State. A patient who has been in the Severe State, as a consequence of receiving invasive mechanical ventilation in an ICU, cannot re-enter the Moderate State for the purposes of assessment of eligibility. A patient who receives an assignment in the REMAP while in the Severe State cannot receive any subsequent assignments in the Moderate State. Where trial related processes, such as reveal of assignment or obtaining consent, create a time gap between initial assessment of eligibility and awareness of the patient’s assignment, the state in which the patient is analyzed is that which occurred at the time of assessment, not the time of reveal of the assignment.
A patient enrolled while in the Moderate State, if reassessed for eligibility for additional domains having progressed to the Severe State, may have new microbiological information that has accumulated during this interval of time. This could result in a patient with suspected pandemic infection having information that results in pandemic infection being excluded, at the time of reassessment. In this situation, the patient is analyzed in the pandemic model, as enrolled, in the Moderate State and is not eligible for enrolment in new domains in the Severe State (including domains evaluated in the interpandemic model). It is also noted that, for a patient who is enrolled in both states, that other time-varying baseline variables may have changed between each enrolment. For such patients, potential time-varying baseline variables will be collected in reference to enrolment in the Moderate State and again in reference to enrolment in the Severe State.

<p>| 7.5.6.1. Non-influenza organism | The Antiviral Domain (which includes only antiviral agents active against influenza) would not be applied in the pandemic model. | The Influenza Antiviral Domain (which includes only antiviral agents active against influenza) would not be applied in the pandemic model. | Addition of the word influenza to differentiate between the Antiviral Domain for pandemic (non-influenza) patients and the Antiviral Domain |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Influenza pandemic</th>
<th>Pandemic primary endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.6.2</td>
<td>The default plan is that during a pandemic, patients in the PISOP and PINSNIP stratum will be eligible to receive an assignment in these domains and will be analyzed in the interpandemic model which will continue to be analyzed for statistical triggers and platform conclusions.</td>
<td>The default plan is that during a pandemic, patients in the PISOP and PINSNIP strata will be eligible to receive an assignment in these domains and will be analyzed in the interpandemic model which will continue to be analyzed for statistical triggers and platform conclusions.</td>
</tr>
</tbody>
</table>

Correction of acronym spelling error. PINSNP - Pandemic infection is neither suspected nor proven. Correction of grammatical error. Stratum changed to strata.

	The default pandemic primary endpoint will be a composite end-point that comprises the number of whole and part study days for which the patient is alive and not admitted to an ICU up until the end of study day 21. All patients who die before discharge from an acute hospital, irrespective of whether this occurs before or after D21, will be coded as zero days.	The default pandemic primary endpoint will be an ordinal scale that is a composite end-point that comprises mortality during the acute hospital admission and the number of whole and part study days for which the patient is alive and not requiring organ failure support while admitted to an ICU up until the end of study day 21. All patients who die before discharge from an acute hospital, irrespective of whether this occurs before or after D21, will be coded as 1 day. All patients who never receive organ failure support while admitted to an ICU will be coded as 22.
	This represents a change to the primary end-point. The first interim analysis utilizing the pandemic statistical model has not yet occurred. The change in definition relates to the need for an end-point that is suitable for less severe patients as well as the observation that, in some locations, policies related to admission and...	
If appropriate, based on an understanding of clinical and biological factors, as well as operational factors, an alternative pandemic primary end-point may be specified at the time of activation of the PATC. Other possible primary end-points include days alive and outside the ICU with alternative durations of follow up or the use of an alternative composite based on days alive without organ support. The pandemic primary endpoint will be used for the adaptive analyses that inform the RAR and for Statistical Triggers.	If appropriate, based on an understanding of clinical and biological factors, as well as operational factors, an alternative pandemic primary end-point may be specified at the time of activation of the PATC or at any time prior to the first interim analysis using the pandemic statistical model. Other possible primary end-points include days alive and outside the ICU with alternative durations of follow up or the use of an alternative composite based on admission to ICU. The pandemic primary endpoint will be used for the adaptive analyses that inform the RAR and for Statistical Triggers.	
discharge from the ICU are modified because of ICU-bed availability or infection control policies or both. As such, location of the patient no longer served as a valid surrogate for severity of illness. As a consequence, the primary end-point has been updated to capture actual provision of organ failure support while admitted to an ICU. Additionally, to improve the operating characteristics of the original ordinal scale, new categories have been created at either end of the scale to differentiate patients who die from those who have provision	If the primary end-point includes a time-based outcome measure, assignment to one or more domains will occur at different time-points if the patient receives assignments in one or more domains while in the Moderate State and one or more domains in the Severe State. The commencement of the period of observation commences at the time of assignment, which can lead to the same patient having different values for different domains, as determined by the state in which enrolment occurred. This can be accommodated because there are separate statistical models for each state. Where a patient is eligible for two or more domains in a state, assignment can only occur at a single time-point, i.e. it is	
not possible to have more than one time of assignment
different domains in the same state.

of organ failure support
throughout 21 days of an
ICU admission and to
differentiate patients
ever admitted to an ICU
from those who are never
admitted. Operational
clarity of how the end-
point is applied to a
patient who receives an
assignment in the
platform at different time
points, while in different
states, is provided.

<table>
<thead>
<tr>
<th>7.7.2. Response adaptive randomization Page 29</th>
<th>Blank</th>
<th>Within the PISOP stratum, and only for domains with five or more interventions, the minimum RAR proportion may be decreased to less than 10% but will not be decreased to less than 5%.</th>
<th>An update to how RAR is applied in domains with a large number of interventions to maintain appropriate statistical properties with respect to participant assignment.</th>
</tr>
</thead>
</table>
| 7.7.3. Unit-of-analysis Page 29 | Blank | 7.7.3. Unit-of-analysis
7.7.3.1. Application of additional strata | New sub-headings to distinguish application of additional strata and |
Patients within the PISOP stratum may be further stratified dependent on whether pandemic infection is confirmed or not confirmed by microbiological testing. Additional strata may be applied and this can be specified in a DSA. Any or all of these strata can be utilized to determine eligibility for a domain or an intervention within a domain. These strata can also be used to define a unit-of-analysis in the pandemic statistical model.

7.7.3.2. Application of state

The state, at time of first enrolment, can also be used to determine eligibility or be used to define a unit-of-analysis or both. Where specified in the statistical model, the treatment effect of an intervention is allowed to vary between different states. A Bayesian Hierarchical Model (BHM) is used for all treatment-by-state interactions. In the BHM a hyperprior is used for the differing treatment effects across states. The standard deviation of the hyperprior, gamma, is a modelling starting estimate for the variation in the magnitude of the difference in treatment effects between states. By default, the starting estimate of the difference is zero. The gamma parameter influences the extent to which the treatment effect of interventions is permitted to vary between states. At the application of state are applied.

Application of state is an entirely new section that deals with aspects of the statistical analysis that occur as a consequence of the specification and application of states.
commencement of a model, the gamma parameter must be set, for each domain-state pair.

In this REMAP, only three options are permitted with respect to specifying the gamma parameter for each domain-state pair. Firstly, gamma may be set to zero. The effect of this is that treatment effect of an intervention is assumed proportional between specified states. The unit-of-analysis is not sub-divided according to state. If gamma is set to zero for all states for a domain, the unit of analysis is all patients randomized in that domain. Secondly, and at the opposite extreme, gamma can be set to infinity. In this situation treatment effect is evaluated separately and independently in each state (with no borrowing between states). Thirdly, gamma may be set to a defined number between zero and infinity. This parameter value cannot be varied for different domain-state pairs, a global REMAP value has been selected. This specified value for gamma places a constraint on the variance of the difference in treatment effect in different states but permits the model to estimate treatment effect for patients enrolled in one state by borrowing from patients enrolled in one or more adjacent states. Borrowing occurs to the extent that it is supported by the accumulated data, but the setting of
gamma influences the amount of borrowing and how quickly borrowing is able to occur. The value of gamma that has been chosen has been determined by simulations to achieve a compromise between type I and type II error in baseline scenarios that assume either equivalence or superiority. Where a value for gamma is specified in the pandemic statistical model, in this REMAP the value of gamma will be 0.15.

A patient who is enrolled in a defined state, may have a clinical course that evolves with the patient entering a new state. Progression from one state, to another, may trigger eligibility for one or more domains. Where this occurs and the change in state defines a new unit-of-analysis, the RAR proportions may be different in each state. In this situation the RAR proportions that are relevant to that patient’s state will be applied. In this regard, randomization to one or more domains in an initial state will occur, using RAR proportions that apply to that state with a separate subsequent randomization to one or more domains occurring if the patient enters a new state, with RAR proportions that apply to that state. When a new state commences there may be insufficient patients to determine valid RAR proportions for that domain in the new state. In this situation either RAR...
proportions are balanced or RAR proportions from an
adjacent state are applied (unless otherwise specified in
a DSA).

The RAR proportions that apply when state is used to
define a unit-of-analysis are derived from all patients
who receive an assignment in a domain in that state,
irrespective of whether the patient was assigned an
intervention in a different domain in a different state.

7.7.3.3. Analyses for combinations of therapies
Unless otherwise specified in a DSA, a Platform
Conclusion can be reached for combinations of
treatments that are being evaluated within the platform.
This applies to interventions within a domain as well as
interventions in different domains. As such, all of the
following can be reported as Platform Conclusions: an
interaction between interventions in different domains
and that the treatment effect of more than one active
intervention is different to a no treatment (standard of
care) intervention. A domain that contains
two or more
treatments, each of which is assigned against a no
treatment control in a factorial manner (i.e. the N x N
table of yes / no for n treatments) will be analyzed as an
N x N factorial. Structuring the analysis in this way allows
| 7.7.4.2. Intervention Inferiority Statistical Trigger | At any adaptive analysis, if a single intervention has at least a 0.95 posterior probability of being a member of the optimal regimen, for that unit-of-analysis, then that intervention will be deemed as being superior to all other interventions in that domain in that target population. | Updated to a more stringent probability as a consequence of the conduct of simulations which demonstrated inadequate control of type I error with previous threshold probability. |
| 7.7.4.3. Intervention Efficacy Statistical Trigger | At any adaptive analysis, if a single intervention has at least a 0.99 posterior probability of being a member of the optimal regimen, for that unit-of-analysis, then that intervention will be deemed as being superior to all other interventions in that domain in that target population. | Addition of a new type of statistical trigger. The need for this has emerged as a consequence of several of the COVID-19 specific domains having a 'no intervention control' (i.e. standard of care control) rather than a comparative effectiveness structure. As such, the inclusion of this type of statistical... |

The model to learn more quickly about the effectiveness of each treatment, recognizing common treatment exposure across intervention assignments.
7.7.4.4. Intervention Inferiority Statistical Trigger

<table>
<thead>
<tr>
<th>At any adaptive analysis, if a single intervention has less than a 0.05 posterior probability of being a member of the optimal regimen, for a unit-of-analysis, then that intervention will be deemed as being inferior to other interventions in the domain for that target population. An asymmetrical inferiority statistical trigger may be set, particularly if an active intervention was being evaluated against an intervention that specifies no active treatment in that domain.</th>
</tr>
</thead>
</table>

Updated to a more stringent probability as a consequence of the conduct of simulations which demonstrated inadequate control of type I error with previous threshold probability. Operationally, this permits removal of trigger permits conclusions to be drawn regarding effectiveness of an intervention against just the standard of care control, which corresponds to a highly clinically relevant question.
against an intervention that specifies no active treatment in that domain.

standard of care control when the aggregate effect of two or more active interventions is superior to the control, even if it is not yet known which active interventions are effective or their relative effectiveness. Similarly, it permits, with an asymmetric trigger, the removal of an intervention that is worse than a standard of care control.

<table>
<thead>
<tr>
<th>7.7.4.5. Equivalence and futility</th>
<th>7.6.3.4. Equivalence</th>
<th>7.7.4.5. Equivalence and futility</th>
</tr>
</thead>
<tbody>
<tr>
<td>The equivalence boundary (delta) for different endpoints selected for the PISOP stratum may be changed depending on the clinical impact of the delta for the chosen endpoint. The default delta for the Core Protocol will be used to select clinically similar effects on the chosen primary endpoint. If a 21-day ICU free day mortality or 21-day ICU or</td>
<td>The equivalence boundary (delta) for different endpoints selected for the PISOP stratum may be changed depending on the clinical impact of the delta for the chosen endpoint. The default delta for the Core Protocol will be used to select clinically similar effects on the chosen primary endpoint. If a mortality or 21-day ICU or</td>
<td>There is no change to the evaluation of equivalence but introduces a trigger for futility, which corresponds to a ‘one-sided’ evaluation of equivalence, which is</td>
</tr>
</tbody>
</table>

Page 32
endpoint is selected the 20% proportional odds equivalency delta will be the default. Alternatively, a DSA may specify a futility boundary (delta) with respect to the primary end-point. For the pandemic primary end-point, the default futility boundary for an intervention will be set as a posterior probability of less than 0.05 for at least a 20% odds-ratio improvement. This rule corresponds to the one-sided equivalency region.

organ support free day endpoint is selected the 20% proportional odds equivalency delta will be the default. Alternatively, a DSA may specify a futility boundary (delta) with respect to the primary end-point. For the pandemic primary end-point, the default futility boundary for an intervention will be set as a posterior probability of less than 0.05 for at least a 20% odds-ratio improvement. This rule corresponds to the one-sided equivalency region.

7.7.4.6. Statistical thresholds for early phase interventions

During the pandemic there may be need to test multiple candidate interventions that are at an early phase of development, identifying those interventions that are most promising to be retained within the platform. Such interventions may be evaluated after a fixed recruitment against a 'stop-go' criteria for retention, and expansion, within the platform. The default threshold for retention and expansion of an intervention will be a posterior probability of 0.5 or more that there is at least a 30% benefit in odds ratio.

This is an entirely new section that is designed for early phase (i.e. phase II type) interventions for which rapid learning is desirable.
OPERATIONAL CONSIDERATIONS IN A PANDEMIC

| 8.2 Safety Monitoring and Reporting Page 34 | Blank | 8.2. Safety Monitoring and Reporting
During the interpandemic period, the platform evaluates solely or predominantly interventions that are in widespread clinical use for severe CAP and for which the safety profile of the intervention is well described. During a pandemic, the platform may evaluate therapeutic agents that have been repurposed or are an Investigational Medical Product. Such therapeutic agents may not have an established safety profile or an established safety profile when used in critically ill patients. Where an intervention is not regarded as having an established safety profile, this will be specified in the DSA. For this type of interventions more specific or more detailed SAE reporting will be required that is specified in the Core Protocol, as follows.
This may include Adverse Events of Special Interest (AESI). SAEs that might be attributable to specific interventions are included as secondary endpoints in each DSA but are recorded only for participants who are enrolled in that domain. If more detailed SAE or AE/AESI reporting is required for an intervention, then this New section which substantially updates the approach to safety monitoring and reflects incorporation within the platform of some interventions that are repurposed medications, as well as others which are unlicensed medicines. In both of these situations the prior safety knowledge of the intervention in this patient population is substantially less than when the platform was evaluating solely or predominately comparative effectiveness. |

CONFIDENTIAL

Page 81 of 431
additional safety reporting requirement will be specified in the relevant DSA and recorded only for participants who are enrolled in that domain. The following arrangements apply to such
When submitting the SAE form the local site PI should determine if the SAE is attributable to one or more study interventions in this trial. The local PI will assess if it is possible, probable, or certain that there is a direct link between a trial intervention and the SAE (a Serious Adverse Drug Reaction, SADR).

The regional / country project manager should review the SAE form for completeness and query any missing data with the site. Preliminary SAE report forms should be submitted as soon as the site becomes aware. It is recognized that follow-up information may be available later.

The regional lead investigator, or medically qualified designee, should review the SAE to assess expectedness and causality. The regional lead investigator or delegate cannot downgrade the site’s assessment of expectedness and causality. The following requirements are specified:
- The regional Sponsor should be made aware of the SAE within 24 hours of the SAE being reported.

| interventions that were in widespread use. |
• All SAEs must be followed-up until resolution, or end of trial if this is sooner.
• SAEs will be reported to the relevant ethics committee and competent authority according to local regulations and requirements.

All SAEs, pooled from all regions, will be reported to the DSMB at intervals agreed by the REMAP-CAP investigators and the DSMB. This may vary depending on the specific intervention being evaluated. The DSMB may request additional specialist review of safety data for certain interventions.

If drugs have been supplied by a pharmaceutical company, then reporting of safety data to the company may be required. The details of this reporting will be included in individual Safety Data Exchange Agreements (SDEA).

On an annual basis a Developmental Safety Update Report (DSUR) will be produced including all SAE data from all regions in REMAP-CAP and will be submitted to the relevant competent authorities as required. This may be shared with pharmaceutical companies as part of the SDEA.

If an SAE is determined to be unexpected (not previously described in the Summary of Product Characteristics /
| Investigator Brochure / Protocol | and related to the study medication then it is considered a SUSAR. In these cases, the following steps should also be undertaken, in addition the performing the steps described above for handling SAEs:

- The relevant competent authorities and ethics committees should be notified of the SUSAR by the Sponsor or designee in each region.
- A SUSAR that results in death or is life-threatening, should be reported to the aforementioned bodies within 7 days of the Sponsor (or designee) becoming aware of the event. Further relevant information should be sought and a follow-up report completed as soon as possible and submitted within 8 additional days.
- A SUSAR which does not result in death or is not life-threatening should be reported within 15 days of the Sponsor (or designee) becoming aware of the event or in accordance with the local regulatory requirements. Further relevant information should be given as soon as possible. The regional / country project managers should notify all investigators at all sites that a SUSAR has occurred. The REMAP-CAP DSMB should be notified that a SUSAR has occurred. |
|---|---|

| | |
It may be necessary to take appropriate urgent safety measures in order to protect research participants against any immediate hazard to their health or safety, without prior authorization from a regulatory body. If this occurs the regulatory bodies should be notified as soon as possible and in any event within three days, in the form of a substantial amendment, that such measures have been taken and the reasons why.

SAEs reported will be coded using the currently available version of the Medical Dictionary for Regulatory Activities (MedDRA). Coding will be to lowest level terms. The preferred term, and the primary system organ class will be listed. Summaries of all SAEs by treatment group will include:

- The number and percentage of patients with at least 1 SAE by system organ class and preferred term
- The number of SAEs by relationship to treatment (related, not related), presented by system organ class and preferred term

8.4. Role of the DSMB

While the PISOP stratum is open the DSMB is also permitted to liaise with public health authorities, regulatory authorities, or the DSMBs of trials evaluating the same or similar interventions regarding the results and appropriate interpretation of adaptive analyses in keeping with prevailing international standards. If the DSMB communicates with public health authorities and/or regulatory authorities, summaries of all SAEs of a serious nature, that is, those that are life-threatening, require hospitalization, or are disabling, will be reported to the relevant authorities.

The description of external groups that the DSMB may liaise with has been expanded to be
authorities the ITSC must be informed that such communication has occurred but the content of that communication may remain confidential between the DSMB and the relevant public health authorities. The DSMB may recommend to the ITSC that public reporting of posterior probabilities that have not attained a threshold for a Statistical Trigger should occur.

keeping with prevailing international standards. If the DSMB communicates with external groups the ITSC may be informed that such communication has occurred but the content of that communication may remain confidential between the DSMB and the relevant group. The DSMB may recommend to the ITSC that public reporting of posterior probabilities that have not attained a threshold for a Statistical Trigger should occur.

8.6. Funding of the trial

Possible sources of additional resources include, but are not limited to, healthcare systems, public health authorities, and local and international research funding bodies.

Possible sources of additional resources include, but are not limited to, healthcare systems, pharmaceutical companies, public health authorities, and local and international research funding bodies. A section of the Core Protocol indicates that "the trial will not enter into a contract with a commercial organization unless the contract specifies that, among other clauses, "that all data are owned by the trial and the commercial organization has no authority to access data". This clause should not be interpreted as indicating that access to data by a commercial organization is not permitted. Such as access can be agreed, for example, by licensing access to data, if agreed by both a commercial partner and trial sponsors.

include the DSMB of overlapping trials. The word must has been changed to may to clarify that the DSMB is not obliged to inform the ITSC regarding communication with external groups.

Pharmaceutical companies added to reflect that medicine interventions have been added that might be externally funded.
Randomized, Embedded, Multifactorial Adaptive Platform trial for Community-Acquired Pneumonia (REMAP-CAP): CORE PROTOCOL
TABLE OF CONTENTS

1. ABBREVIATIONS AND GLOSSARY ... 94
 1.1. Abbreviations ... 94
 1.2. Glossary ... 96

2. INTRODUCTION ... 101
 2.1. Synopsis ... 101
 2.2. Protocol Structure.. 103
 2.2.1. Core Protocol .. 104
 2.2.2. Domain-Specific Appendices ... 104
 2.2.3. Region-Specific Appendices .. 105
 2.2.4. Statistical Analysis Appendix and Simulations Appendix 105
 2.2.5. Pandemic Appendix ... 106
 2.2.6. Version History ... 106
 2.3. Lay Description .. 107
 2.4. Trial registration .. 108
 2.5. Funding of the trial .. 108

3. STUDY ADMINISTRATION STRUCTURE .. 108
 3.1. International Trial Steering Committee .. 109
 3.1.1. Responsibilities ... 110
 3.1.2. Members ... 110
 3.1.3. Contact Details ... 111
 3.2. Regional Management Committees .. 112
 3.2.1. Responsibilities ... 112
 3.3. Domain-Specific Working Groups .. 112
 3.3.1. Responsibilities ... 112
 3.3.2. Members ... 113
 3.4. International Interest Groups .. 113
 3.4.1. Role ... 113
 3.5. Sponsors ... 113
 3.5.1. Role of sponsor ... 113
 3.5.2. Insurance ... 113

4. INTERNATIONAL TRIAL STEERING COMMITTEE AUTHORIZATION 114

5. BACKGROUND & RATIONALE ... 117
5.1. Severe Community-Acquired Pneumonia ... 117
 5.1.1. Introduction ... 117
 5.1.2. Epidemiology .. 117
 5.1.3. Standard care for patients with severe CAP ... 118
 5.1.4. Treatment guidelines ... 120
 5.1.5. Variation in care and compliance with guidelines .. 120
 5.1.6. An unmet need for better evidence ... 121
5.2. Influenza pandemics and emerging pathogens .. 121
5.3. Randomized Embedded Multifactorial Adaptive Platform Trials 121
 5.3.1. Generating clinical evidence ... 121
 5.3.2. Underlying Principles of the Study Design .. 122
 5.3.3. Nomenclature .. 124
 5.3.4. Randomization and Response Adaptive Randomization ... 124
 5.3.5. Embedding ... 126
 5.3.6. Multifactorial .. 127
 5.3.7. Adaptive .. 127
 5.3.8. Nesting of the REMAP within a Registry ... 134
 5.3.9. Platform .. 135
6. OBJECTIVES .. 136
 6.1. Primary objective .. 136
 6.2. Secondary objectives .. 136
7. SUMMARY OF TRIAL DESIGN .. 136
 7.1. Introduction .. 136
 7.2. Nomenclature ... 138
 7.3. Study setting and participating regions .. 138
 7.4. Eligibility criteria .. 139
 7.4.1. REMAP Inclusion Criteria .. 139
 7.4.2. REMAP Exclusion Criteria ... 140
 7.4.3. Domain-Specific Entry criteria ... 140
 7.5. Interventions ... 141
 7.5.1. Domain-Specific Information .. 141
 7.5.2. Treatment allocation and Response Adaptive Randomization 141
 7.5.3. Adaptation of Domains and Interventions ... 143
7.6. Endpoints ... 144
 7.6.1. Primary Endpoint ... 144
 7.6.2. Secondary Endpoints .. 144

7.7. Bias Control .. 145
 7.7.1. Randomization .. 145
 7.7.2. Allocation concealment ... 146
 7.7.3. Blinding of treatment allocation .. 146
 7.7.4. Blinding of outcome adjudication ... 146
 7.7.5. Follow up and missing data ... 146

7.8. Principles of Statistical Analysis ... 147
 7.8.1. Preface .. 147
 7.8.2. Introduction ... 147
 7.8.3. Target populations (strata and states) and implications for evaluation of treatment-
 by-treatment and treatment-by-strata interactions ... 149
 7.8.4. Bayesian Statistical modeling ... 159
 7.8.5. Statistical Handling of Ineligible Participants ... 161
 7.8.6. Intervention Superiority Statistical Trigger .. 163
 7.8.7. Intervention Inferiority Statistical Trigger ... 163
 7.8.8. Intervention Equivalence Statistical Trigger .. 163
 7.8.9. Action when a Statistical Trigger is achieved ... 164
 7.8.10. Analysis set for reporting .. 168
 7.8.11. Simulations and statistical power ... 168
 7.8.12. Updating model after monitoring .. 169

7.9. Co-enrollment with other trials ... 169

7.10. Cooperation between the REMAP and other trials with overlapping populations or
 interventions .. 170

7.11. Registry of non-randomized patients .. 170

7.12. Criteria for termination of the trial .. 170

8. TRIAL CONDUCT ... 171
 8.1. Site time-lines ... 171
 8.1.1. Initiation of participation at a site ... 171
 8.1.1. Vanguard sites .. 172
 8.2. Summary of time-lines for recruited participants ... 172
 8.3. Recruitment of participants including embedding .. 173
8.3.1. Embedding ... 173
8.3.2. Participant recruitment procedures at participating units .. 173
8.4. Treatment allocation .. 174
8.5. Delivery of interventions .. 174
8.5.1. Treatment allocation and protocol adherence at participating units 174
8.6. Unblinding of allocation status ... 175
8.7. Criteria for discontinuation of a participant in the trial .. 175
8.8. Concomitant care and co-interventions .. 176
8.9. Data collection .. 176
8.9.1. Principles of data collection ... 176
8.9.2. Variables to be collected ... 176
8.9.3. Data required to inform Response Adaptive Randomization ... 178
8.9.4. Blinding of outcome assessment .. 179
8.10. Data management .. 179
8.10.1. Source Data ... 179
8.10.2. Confidentiality .. 180
8.11. Quality assurance and monitoring .. 180
8.11.1. Plans for improving protocol adherence and complete data ... 180
8.11.2. Data Monitoring ... 181
8.12. Data safety and monitoring board ... 181
8.13. Safety monitoring and reporting .. 182
8.13.1. Principles .. 182
8.13.2. Definition ... 183
8.13.3. Reporting Procedures for Serious Adverse Events ... 183
8.13.4. Attribution of serious events to study interventions .. 184
8.13.5. Attribution of a death to study interventions or study participation 184

9. GOVERNANCE AND ETHICAL CONSIDERATIONS ... 184
9.1. Management of participating sites and trial coordination ... 184
9.2. Ethics and regulatory issues .. 185
9.2.1. Guiding principles ... 185
9.2.2. Ethical issues relevant to this study .. 185
9.2.3. Approvals ... 187
9.3. Protocol modifications ... 187
9.3.1. Amendments ... 187
9.4. Confidentiality... 188
9.5. Declarations of interest ... 188
9.6. Post-trial care.. 188
9.7. Communication... 188
 9.7.1. Reporting ... 188
 9.7.2. Communication of trial results ... 189
9.8. Publication policy... 189
9.9. Data access and ownership ... 189
 9.9.1. Data ownership... 189
 9.9.2. Access to Data... 189
9.10. Consent form ... 190

10. REFERENCES .. 191

TABLE OF TABLES
Table 1: Potential targets of interventions to reduce mortality in patients with CAP 119
Table 2: Features of a REMAP that contribute to advantages of the design 135

TABLE OF FIGURES
Figure 1: Protocol Structure ... 103
Figure 2: REMAP-CAP Organization Chart ... 109
Figure 3: Adaptive Analyses... 130
Figure 4: REMAP Evolution Over Time .. 134
Figure 5: REMAP Structure ... 137
Figure 6: Study Procedures... 172
1. ABBREVIATIONS AND GLOSSARY

1.1. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANZ</td>
<td>Australia and New Zealand</td>
</tr>
<tr>
<td>APACHE</td>
<td>Acute Physiology and Chronic Health Evaluation</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute Respiratory Distress Syndrome</td>
</tr>
<tr>
<td>BHM</td>
<td>Bayesian Hierarchical Model</td>
</tr>
<tr>
<td>CAP</td>
<td>Community-Acquired Pneumonia</td>
</tr>
<tr>
<td>CIHR</td>
<td>Canadian Institutes of Health Research</td>
</tr>
<tr>
<td>CIHR-SPOR</td>
<td>Canadian Institutes of Health Research Strategy for Patient-Oriented Research</td>
</tr>
<tr>
<td>CRF</td>
<td>Case Report Form</td>
</tr>
<tr>
<td>DSA</td>
<td>Domain-Specific Appendix</td>
</tr>
<tr>
<td>DSMB</td>
<td>Data Safety and Monitoring Board</td>
</tr>
<tr>
<td>DSWG</td>
<td>Domain-Specific Working Group</td>
</tr>
<tr>
<td>eCIS</td>
<td>Electronic Clinical Information System</td>
</tr>
<tr>
<td>eCRF</td>
<td>Electronic Case Report Form</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>EU</td>
<td>European</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration (United States)</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
</tr>
<tr>
<td>HDU</td>
<td>High Dependency Unit</td>
</tr>
<tr>
<td>HRC</td>
<td>Health Research Council</td>
</tr>
<tr>
<td>HRQoL</td>
<td>Health Related Quality of Life</td>
</tr>
<tr>
<td>ICMJE</td>
<td>International Committee of Medical Journal Editors</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>IEIG</td>
<td>International Embedding Interest Group</td>
</tr>
<tr>
<td>IIG</td>
<td>International Interest Group</td>
</tr>
<tr>
<td>ILTOHEIG</td>
<td>International Long-term Outcomes and Health Economics Interest Group</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IPWG</td>
<td>International Pandemic Working Group</td>
</tr>
<tr>
<td>ISIG</td>
<td>International Statistics Interest Group</td>
</tr>
<tr>
<td>ITSC</td>
<td>International Trial Steering Committee</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention-To-Treat</td>
</tr>
<tr>
<td>LOS</td>
<td>Length of Stay</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>OFFD</td>
<td>Organ Failure Free Days</td>
</tr>
<tr>
<td>P:F Ratio</td>
<td>Ratio of Partial Pressure of Oxygen in Arterial Blood and Fraction of Inspired Oxygen Concentration</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positive End-Expiratory Pressure</td>
</tr>
<tr>
<td>PREPARE</td>
<td>Platform for European Preparedness Against (Re-)emerging Epidemics</td>
</tr>
<tr>
<td>RAR</td>
<td>Response Adaptive Randomization</td>
</tr>
<tr>
<td>REMAP</td>
<td>Randomized, Embedded, Multifactorial, Adaptive Platform trial</td>
</tr>
<tr>
<td>REMAP-CAP</td>
<td>Randomized, Embedded, Multifactorial, Adaptive Platform trial for Community-Acquired Pneumonia</td>
</tr>
<tr>
<td>RCC</td>
<td>Regional Coordinating Center</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>RMC</td>
<td>Regional Management Committee</td>
</tr>
<tr>
<td>RSA</td>
<td>Region-Specific Appendix</td>
</tr>
<tr>
<td>SAC</td>
<td>Statistical Analysis Committee</td>
</tr>
<tr>
<td>SAE</td>
<td>Serious Adverse Event</td>
</tr>
<tr>
<td>SARS</td>
<td>Severe Acute Respiratory Syndrome</td>
</tr>
<tr>
<td>SOPs</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>VFD</td>
<td>Ventilator Free Days</td>
</tr>
<tr>
<td>WG</td>
<td>Working Group</td>
</tr>
<tr>
<td>WHODAS</td>
<td>World Health Organization Disability Assessment Schedule</td>
</tr>
</tbody>
</table>
1.2. Glossary

Borrowing is the process within the statistical model, whereby, when the treatment effect is similar in different strata, evidence relating to the effectiveness of an intervention in one stratum contributes to the estimation of the posterior probability in another stratum.

Core Protocol is a module of the protocol that contains all information that is generic to the Randomized, Embedded, Multifactorial, Adaptive Platform trial (REMAP), irrespective of the regional location in which the trial is conducted and the domains or interventions that are being tested.

Domain-Specific Appendix is an appendix to the Core Protocol. These appendices are modules of the protocol that contain all information about the interventions, which are nested within a domain that will be a subject of this REMAP. Each domain will have its own Domain-Specific Appendix (DSA). The information contained in each DSA includes criteria that determine eligibility of patients to that domain, the features of the interventions and how they are delivered, and any additional endpoints and data collection that are not covered in the Core Protocol.

Domain-Specific Working Group is a sub-committee involved in trial management, the members of which take responsibility for the development and management of a current or proposed new domain.

Domain consists of a specific set of competing alternative interventions within a common clinical mode, which, for the purposes of the platform, are mutually exclusive and exhaustive. Where there is only a single intervention option within a domain the comparator is all other usual care in the absence of the intervention. Where multiple interventions exist within a domain, comparators are the range of interventions either with or without a no intervention option, depending on whether an intervention, within the domain, is provided to all patients as part of standard care. Within the REMAP every patient will be assigned to receive one and only one of the available interventions within every domain for which they are eligible.
International Trial Steering Committee is the committee that takes overall responsibility for the management and conduct of the REMAP with oversight over all regions and all domains.

Intervention is a treatment option that is subject to variation in clinical practice (comparative effectiveness intervention) or has been proposed for introduction into clinical practice (experimental intervention) and also is being subjected to experimental manipulation within the design of a REMAP. For the purposes of the REMAP an intervention can include an option in which no treatment is provided.

Monte-Carlo Simulations are computational algorithms that employ repeated random sampling to obtain a probability distribution. They are used in the design of the study to anticipate trial performance under a variety of potential states of ‘truth’ (e.g., to test the way in which a particular trial design feature will help or hinder the ability to determine whether a ‘true’ treatment effect will be discovered by the trial). Monte Carlo methods are also used to provide updated posterior probability distributions for the ongoing analyses of the trial.

Pandemic Appendix describes an appendix to the Core Protocol that includes the modifications to the Core Protocol that will occur during a pandemic of respiratory infection that results in severe CAP.

Platform Conclusion describes when a Statistical Trigger has been reached and, following evaluation by the Data Safety and Monitoring Board (DSMB) +/- the International Trial Steering Committee (ITSC), there is a decision to conclude that superiority, inferiority or equivalence has been demonstrated. Under all circumstances a Platform Conclusion leads to implementation of the result within the REMAP and under almost all circumstances a Platform Conclusion leads, immediately, to Public Disclosure of the result by presentation and publication. Where the Statistical Trigger is for superiority or inferiority, so long as the DSMB is satisfied that the Statistical Trigger has truly been met a Platform Conclusion will be automatic in almost all circumstances. Where the Statistical Trigger is for equivalence the DSMB, in conjunction with the ITSC, may decide to not reach a Platform Conclusion at that time but, rather, to continue recruitment, for example, to allow a conclusion to be reached regarding clinically important secondary endpoints. There are situations in which the need
to evaluate interactions may also result in a Statistical Trigger not leading, immediately, to a Platform Conclusion, although if superiority or inferiority has been demonstrated all patients in the REMAP will receive the superior intervention or no longer be exposed to inferior intervention(s), respectively.

Platform Trial is a type of clinical trial that studies multiple interventions simultaneously. Common features of a platform trial include frequent adaptive analyses using Bayesian statistical analysis, Response Adaptive Randomization (RAR), evaluation of treatment effect in pre-specified strata, and evaluation of multiple research questions simultaneously that can be perpetual with substitution of answered research questions with new questions as the trial evolves.

Public Disclosure is the communication of a Platform Conclusion to the broad medical community by means of presentation, publication or both.

Regimen consists of the unique combination of interventions, within multiple domains, (including no treatment options) that a patient receives within a REMAP.

Region-Specific Appendix is an appendix to the Core Protocol. These appendices are modules of the protocol that contain all information about the trial specific to the conduct of the trial in that region. Each region will have its own Regional-Specific Appendix (RSA). A region is defined as a country or collection of countries with study sites for which a Regional Management Committee (RMC) is responsible.

Regional Management Committee is a sub-committee involved in trial management. The members of the RMC take responsibility for the management of trial activities in a specified region. The role, responsibilities, and composition of each RMC are specified in each region’s RSA.

REMAP is a variant of a platform trial that targets questions that are relevant to routine care and relies heavily on embedding the trial in clinical practice. Like other platform trials, the focus is on a particular disease or condition, rather than a particular intervention, and it is capable of running perpetually, adding new questions sequentially.
Response Adaptive Randomization is a dynamic process in which the analysis of accrued trial data is used to determine the proportion of future patients who are randomized to each intervention within a domain.

State a state is a set of mutually exclusive and exhaustive categories, defined by characteristics of a patient within the REMAP, that are capable of changing over time for a single patient at different time-points during the patient’s participation in the REMAP (i.e. they can be dynamic). States are used to define eligibility for domains and this can include defining eligibility that occurs after the time of enrollment. State is used as an additive covariate within the Bayesian statistical model.

Statistical Analysis Committee takes responsibility for the conduct of the preplanned adaptations in the trial. This task generally consists of running predetermined statistical models at each adaptive analysis and providing this output to the DSMB. It is not a trial sub-committee. Rather, it will usually comprise individuals who are employed by the organization that undertakes statistical analysis, and from a trial governance perspective is under the supervision of the DSMB.

Statistical Model is a computational algorithm that is used to estimate the posterior probability of the superiority, inferiority or equivalence of the regimens and interventions that are being evaluated within the REMAP.

Statistical Trigger within the REMAP two or more interventions within a domain are evaluated and statistical models are used to determine if one or more interventions are superior, inferior or equivalent. A Statistical Trigger occurs when the statistical models used to analyze the REMAP indicate that the threshold for declaring superiority, inferiority, or equivalence for one or more interventions within a domain has been crossed. A Statistical Trigger applies to a stratum but may be reached in more than one stratum for the same intervention at the same adaptive analysis.

Strata comprise a set of mutually exclusive and exhaustive categories (stratum), defined by baseline characteristics of a patient within the REMAP, in which the relative effects of interventions may be differential. These possibly differential effects of interventions are reflected in the statistical model, the randomization probabilities, and the Platform
Conclusions. The criteria that define a stratum must be present at or before the time of enrollment.

Unit-of-analysis is the group of patients who are analyzed together within the model for a particular domain. The unit-of-analysis can be all patients who have received an allocation status in that domain or a sub-group of patients who received an allocation status determined by their status with respect to one or more strata. Within a domain, the RAR is applied to the unit-of-analysis.
2. INTRODUCTION

2.1. Synopsis

Background: Community-acquired pneumonia (CAP) that is of sufficient severity to require admission to an Intensive Care Unit (ICU) is associated with substantial mortality. All patients with severe pneumonia who are treated in an ICU will receive therapy that consists of a combination of multiple different treatments. For many of these treatments, different options are available currently. For example, several antibiotics exist that are active against the microorganisms that cause pneumonia commonly but it is not known if one antibiotic strategy is best or whether all suitable antibiotic strategies have similar levels of effectiveness. Of all the treatments that clinicians use for patients with severe CAP, only a small minority have been tested in randomized controlled trials to determine their comparative effectiveness. As a consequence, the standard treatments that are administered vary between and within countries. Current conventional clinical trials methods to assess the efficacy of treatments for pneumonia generally compare two treatment options (either two options for the same treatment modality, where both are in common use; or a new treatment against no treatment or placebo where the effectiveness of the new treatment is not known). Using this approach, in a series of separate and sequential trials, it will take an inordinate length of time to study all the treatment options. Additionally, with conventional trial designs it is not possible to evaluate interactions between treatment options.

Aim: The primary objective of this REMAP is, for patients with severe CAP who are admitted to an ICU, to identify the effect of a range of interventions to improve outcome as defined by all-cause mortality at 90 days.

Methods: The study will enroll adult patients with severe CAP who are admitted to ICUs using a design known as a REMAP, which is a type of platform trial. Within this REMAP, eligible participants will be randomized to receive one intervention in each of one or more domains (a domain is a category of treatment that contains one or more options, termed interventions, with each intervention option being mutually exclusive). The primary
outcome is all-cause mortality at 90 days. There will also be both general and domain-specific secondary outcome measures.

In a conventional trial, enrollment continues until a pre-specified sample size is obtained, at which time enrollment ceases, and the trial data are analyzed to obtain a result. The possible results are that a difference is detected or no that no difference is detected. However, when the conclusion of the statistical test is “no difference”, this could be that there truly is no meaningful difference, or that the result is indeterminate (i.e. it is possible that if more patients had been enrolled a clinically relevant difference may have been detected).

In comparison to a conventional trial, this REMAP uses an adaptive design, relying on pre-specified criteria for adaptation, that: avoids indeterminate results; concludes an answer to a question when sufficient data have accrued (not when a pre-specified sample is reached); evaluates the effect of treatment options in pre-defined subgroups of patients (termed strata); utilizes already accrued data to increase the likelihood that patients within the trial are randomized to treatments that are more likely to be beneficial; is multifactorial, evaluating multiple questions simultaneously; is intended to be perpetual (or at least open-ended), substituting new questions in series as initial questions are answered; and can evaluate the interaction between interventions in different domains. Bayesian statistical methods will be used to establish the superiority, inferiority, or equivalence of interventions within a domain. Interventions determined to be superior will be incorporated into standard care within the ongoing REMAP. Interventions determined to be inferior will be discontinued. While a limited number of initial treatments and treatment domains have been specified at initiation, it is planned that this REMAP will continue to evaluate other treatments in the future. Furthermore, in the event of a future epidemic of a novel or re-emerging respiratory pathogen (which typically present as severe CAP), this REMAP would be adapted to evaluate the most relevant treatment options. Each new treatment that is proposed to be evaluated within the REMAP will be submitted for prospective ethical review.
2.2. Protocol Structure

The structure of this protocol is different to that used for a conventional trial because this trial is highly adaptive and the description of these adaptations is better understood and specified using a ‘modular’ protocol design. While all adaptations are pre-specified, the structure of the protocol is designed to allow the trial to evolve over time, for example by the introduction of new domains or interventions or both (see glossary for definitions of these terms), by changing aspects of the trial during a pandemic, and commencement of the trial in new regions. The structure of the protocol is outlined in Figure 1.

Figure 3: Protocol Structure

The protocol has multiple modules, comprising a Core Protocol, Pandemic Appendix to the Core Protocol, multiple DSAs, multiple RSAs, and a Statistical Analysis Appendix. A Pandemic
Appendix to the Core Protocol is intended to be added subsequently. A Simulations Appendix is updated periodically as an operational document.

2.2.1. Core Protocol

The Core Protocol contains all information that is generic to the trial, irrespective of the regional location in which the trial is conducted and the domains or interventions that are being tested. The Core Protocol may be amended but it is anticipated that such amendments will be infrequent. The Core Protocol has the following structure:

- The background and rationale for studying severe CAP
- The background and rationale for the research approach
- The trial design including study setting, the criteria that define eligibility for the REMAP, treatment allocation, strata (see glossary for a definition of this term), principles of application of trial interventions, trial endpoints, methods to control bias, principles of statistical analysis, and criteria for termination of the trial
- The trial conduct including recruitment methods, time-lines for sites, delivery of trial interventions, data collection, data management, and management of participant safety
- The overall / international trial governance structures and ethical considerations

2.2.2. Domain-Specific Appendices

DSAs contain all information about the interventions that will be the subject of the REMAP, which are nested within domains. As such, the Core Protocol does not include information about the intervention(s) that will be evaluated within the REMAP, but rather provides the framework on which multiple different interventions, within domains, can exist within this trial. Each new DSA or addition of one or more interventions to an existing DSA will be submitted for ethical approval prior to commencement. It is anticipated that the DSAs will change over time with removal and addition of interventions within an existing domain, as well as removal and addition of entire domains. Each DSA has the following structure:

- background on the interventions within that domain
- criteria that determine eligibility of patients to that domain
- the features of the interventions and how they are delivered
• any endpoints and data collection that are specific to the domain and additional to those specified in the Core Protocol
• any ethical issues specific to the domain
• the organization of management of the domain

2.2.3. Region-Specific Appendices

This REMAP is intended to be a global trial, conducted in multiple different geographical regions. The RSAs contain all information about the REMAP that is specific to the conduct of the trial in a particular region. This allows additional regions to be added or changes to each region to be made without needing to make major amendments to the Core Protocol in other regions. It is planned that, within each region, the documents submitted for ethical review will comprise the Core Protocol, DSAs, and the RSA for that region (but not other regions). Each RSA has the following structure:

• the definition of the region
• the organization of trial management and administration within the region
• information about availability of domains and interventions
• data management and randomization procedures
• ethical issues that are specific to a region.

If there is information that applies to one or more sub-areas of a region (e.g. a country within Europe or a state or territory within a country) and it is necessary to incorporate this information in the protocol, this information will be included within the RSA. Unless otherwise specified, the RSA will apply to all locations within that region.

2.2.4. Statistical Analysis Appendix and Simulations Appendix

The Statistical Analysis Appendix contains a detailed description of how the statistical analysis will be conducted for reporting treatment effects and reporting interaction between treatments, as well as the RAR. The Statistical Analysis Appendix will be amended when new interventions are added to a domain or when a new domain is added, but will not be updated when interventions are removed from a domain because of inferiority.
The Simulations Appendix is an operational document that contains the results of Monte Carlo simulations that are conducted to describe and understand the operating characteristics of the REMAP across a range of plausible assumptions regarding outcomes, treatment effects, and interactions between interventions in different domains. The statistical power of the study (likelihood of type II error) and the likelihood of type I error are evaluated using these simulations. As the trial adapts, with, for example, the introduction of new interventions, the trial simulations are updated and the Simulations Appendix is amended. The Simulations Appendix is not part of the formal protocol but the conclusions from the Simulations Appendix will be included in protocol documents which will be updated as required. The Simulations Appendix will be maintained as a publicly accessible document on the study website.

2.2.5. Pandemic Appendix

The Pandemic Appendix (to the Core Protocol) contains information about how the core elements of the REMAP will be modified during a pandemic of severe acute respiratory infection that results in CAP. The Pandemic Appendix has the following structure:

- The background and rationale for studying severe CAP caused by a pandemic
- The procedure that will determine activation of the Pandemic Appendix
- How the trial design adapts during a pandemic, including changes to one or more of study setting, treatment allocation, strata, trial endpoints, and principles of statistical analysis that will operate during a pandemic, as well as how the platform resets following a resolution of a pandemic

2.2.6. Version History

Version 1: Approved by the ITSC on 20 November 2016

Version 1.1: Approved by the ITSC on 10 April 2017

Version 2: Approved by the ITSC on 12 December 2017

Version 2.1: Approved by the ITSC on 26 March 2019

Version 3: Approved by the ITSC on 10 July 2019
2.3. Lay Description

Pneumonia, or infection involving the lungs, is a common reason for admission to an ICU. Severe pneumonia is associated not only with failure of lungs supplying oxygen to the body, but also failure of other organ systems that is due to an uncontrolled immune response to infection.

Patients with severe pneumonia routinely receive multiple treatments at the same time — medications to treat the infection (antibiotics), medications that may modify the immune system (immunomodulators) and supportive treatments to support failing organs, such as mechanical ventilation (organ support) and prevention of complications of critical illness or its treatment. For many categories of treatment there are many treatment options that are in widespread use, are believed or known to be safe and effective, but it is not known which option is best. This REMAP aims to determine the best treatment in each category of treatment, for example, the best antibiotic, the best immunomodulation strategy, and the best method to support each failing organ system.

In a conventional clinical trial, selected patients are allocated to receive one treatment from a short list of alternatives, typically one or two. This trial differs from conventional clinical trials by being randomized, embedded, multifactorial, adaptive, and a platform (a “REMAP”). (Angus, 2015) In this type of trial, we will test many alternative treatments (“multifactorial”) by replacing ad hoc treatment decisions with “randomized” treatment allocation (“embedded”). Although treatments will be allocated randomly, patients will preferentially be allocated to treatments that statistical models derived from trial data indicate are more likely to be the most effective treatments. The trial will “adapt” in multiple ways including answering questions as soon as sufficient data have accrued to answer the question of the effectiveness of each treatment and by changing the treatments that are being tested over-time so as to progressively determine the best package of treatments for pre-defined categories of patients with severe pneumonia. Once a treatment is identified as being optimal it is subsequently routinely provided to all eligible patients within the REMAP. The REMAP is also designed to adapt to test relevant interventions during a pandemic caused by lung infection that results in severe pneumonia.
2.4. Trial registration

This is a single trial conducted in multiple regions, but will, as a minimum, be registered with ClinicalTrials.gov. The trial registration number is: NCT02735707.

The Universal Trial Number is: U1111-1189-1653.

2.5. Funding of the trial

At initiation, the trial had funding from the following sources.

The Platform for European Preparedness Against (Re-)emerging Epidemics (PREPARE) consortium is funded by the European Union (FP7-HEALTH-2013-INNOVATION-1, grant number 602525). Within the PREPARE consortium, the trial has funding for the recruitment of approximately 4000 patients.

In Australia, the trial has been funded by the National Health and Medical Research Council (NHMRC) (APP1101719) for AUD $4,413,145, for the recruitment of 2000 patients.

In New Zealand, the trial has been funded by the Health Research Council (HRC) (16/631) for NZD $4,814,924, for the recruitment of 800 patients.

In Canada, the trial has been funded by the Canadian Institute of Health Research, Strategy for Patient-Oriented Research (CIHR-SPOR) Innovative Clinical Trials Program Grant (no. 158584) for CAD $1,497,200, for the recruitment of 300 patients.

Funding is being sought for other regions and countries.

3. STUDY ADMINISTRATION STRUCTURE

The study administration structure is designed to provide appropriate management of all aspects of the study, taking into account multiple factors including representation from regions that are participating in the trial, availability of skills and expertise related to trial conduct and statistical analysis, and content knowledge regarding pneumonia and the interventions that are being evaluated. The administration model is designed to provide effective operational and strategic management of the REMAP that operates in multiple
regions, is supported by multiple funding bodies and sponsors, and will evolve with addition of further regions and funding bodies as well as changes in the domains and interventions that are being evaluated.

The ITSC takes overall responsibility for the trial design and conduct. Each participating region has a RMC that takes primary responsibility for trial execution in that region. An internationally based Domain-Specific Working Group (DSWG) exists for each domain (or for several domains that are closely related) and has responsibility for design and oversight of each domain. Internationally based Interest Groups exist to allow discussion and development of particular aspects of the REMAP related to statistical analysis, embedding, and health economic analysis of results from the trial.

The organizational chart for REMAP-CAP is outlined in Figure 2.

Figure 4: REMAP-CAP Organization Chart

3.1. International Trial Steering Committee

The ITSC comprises the investigators who initially conceived and designed the trial (Foundation members) and representatives from each (funded and active) region. The intent of the ITSC is to have both theoretical and practical experience and knowledge regarding overall design, domain-specific expertise, and regional-specific expertise. As such, the ITSC will include clinical trialists, biostatisticians, regional lead investigators, domain lead
investigators, and regional project managers, and must include one individual who is a Research Coordinator.

3.1.1. Responsibilities

The responsibilities of the ITSC are:

- development and amendment of the Core Protocol
- recruitment and approval of new regions to the REMAP
- liaison with the DSMB including, where appropriate, decisions regarding Platform Conclusions
- consideration of requests and approval of the addition of domains and their nested interventions to the REMAP including prioritization of new domains, new interventions within a domain or both
- liaison with the academic community including the International Committee of Medical Journal Editors (ICMJE) regarding issues such as data sharing and reporting of platform trials including REMAPs
- in conjunction with DSWGs, the analysis and reporting of results from domains
- approval of manuscripts reporting results that are submitted by DSWGs
- coordination of the REMAP during a pandemic
- obtaining funding for the REMAP
- determine the strategic direction of the REMAP

3.1.2. Members

Membership of the ITSC comprises at least 3 investigators from each funded location, the project manager or trial physician in each funded location, at least 1 investigator from Berry Consultants, at least one individual who is a research coordinator, and the chairs of active DSWGs. The operation of the ITSC will be specified by Terms of Reference that will be developed and modified, as required, by the ITSC. The members of the ITSC are:

Professor Derek Angus, Chair Corticosteroid DSWG and Foundation member

Ms. Wilma van Bentum-Puijk, European (EU) Project Manager

Dr. Scott Berry, President and Senior Statistical Scientist of Berry Consultants, and Foundation member
Ms. Zahra Bhimani, Canadian Project Manager

Professor Marc Bonten, European Executive Director, Chair European RMC, and PREPARE Work Package 5 co-lead (specific issues)

Professor Frank Brunkhorst, member EU RMC

Professor Allen Cheng, Chair Antibiotic Domain and Macrolide Duration DSWG

Professor Menno De Jong, member Antiviral DSWG

Dr. Lennie Derde, European Coordinating Investigator, PREPARE Work Package 5 co-lead (specific issues)

Professor Herman Goossens, Principal Investigator for PREPARE

Professor Anthony Gordon, member EU RMC

Mr. Cameron Green, Global Project Manager

Professor Roger Lewis, Foundation member (will step down when SAC is convened)

Dr. Ed Litton, member Australian and New Zealand (ANZ) RMC

Professor John Marshall, Canadian Executive Director

Dr. Colin McArthur, ANZ Deputy Executive Director and Chair Registry WG

Dr. Shay McGuinness, Chair ANZ RMC

Associate Professor Srinivas Murthy, Canadian Deputy Executive Director and Chair Antiviral DSWG

Professor Alistair Nichol, Chair Ventilation DSWG

Associate Professor Rachael Parke, member ANZ RMC

Ms. Jane Parker, Australian Project Manager

Professor Kathy Rowan, member EU RMC

Ms. Anne Turner, New Zealand Project Manager

Professor Steve Webb, ANZ Executive Director and Foundation member

3.1.3. Contact Details

The secretariat functions of the ITSC will rotate among the Regional Coordinating Centers (RCC).
3.2. Regional Management Committees

The operation of the REMAP in each region is undertaken by that region’s RMC, the composition of which is be determined by investigators in each region with membership listed in each RSA. Cross-representation between RMCs is strongly encouraged.

3.2.1. Responsibilities

The responsibilities of each RMC are:

- development and amendment of the RSA for that region
- identification and management of sites in that region
- obtaining funding for that region
- liaison with regional funding bodies
- consideration of the feasibility and suitability of interventions (and domains) for that region
- liaison with the sponsor(s) for that region
- management of systems for randomization and data management for that region

3.3. Domain-Specific Working Groups

Each active and future planned domain (or closely related set of domains) will be administered by a DSWG.

3.3.1. Responsibilities

The responsibilities of each DSWG are:

- development and amendment of the DSA
- proposal and development of new interventions within a domain
- in conjunction with the ITSC, analyzing and reporting results from the domain
- obtaining funding to support the domain, with a requirement that, if such funds are obtained, that an appropriate contribution to the conduct of the REMAP is also made.
3.3.2. Members

Membership of each DSWG is set out in the corresponding DSA but should comprise individuals that provide broad international representation, content knowledge of the domain, and expertise of trial conduct and design.

3.4. International Interest Groups

The following International Interest Groups (IIG) contribute to the trial:

- REMAP-CAP International Statistics Interest Group (ISIG)
- REMAP-CAP International Embedding Interest Group (IEIG)
- REMAP-CAP International Long-term Outcomes and Health Economics Interest Group (ILTOHEIG)
- REMAP-CAP International Pandemic Working Group (IPWG)

3.4.1. Role

The role of the interest groups is to provide advice to the ITSC and DSWGs about trial design and conduct as well as advance academic aspects of the conduct, analysis, and reporting of platform trials including REMAPs.

3.5. Sponsors

In relation to recruitment that occurs in:

- countries in Europe the sponsor is University Medical Center Utrecht.
- Australia the sponsor is Monash University.
- New Zealand the sponsor is the Medical Research Institute of New Zealand.
- Canada the sponsor is Unity Health Toronto.

3.5.1. Role of sponsor

The role of the sponsor in each region is specified in each RSA.

3.5.2. Insurance

The provision of insurance is specified in each RSA.
4. INTERNATIONAL TRIAL STEERING COMMITTEE AUTHORIZATION

The ITSC have read the appendix and authorize it as the official Core Protocol for the study entitled REMAP-CAP. Signed by the ITSC,

EU Executive Director
Marc Bonten

ANZ Executive Director
Steve Webb
ITSC Member
Roger Lewis

ITSC Member
Ed Litton

ITSC Member
John Marshall

ITSC Member
Shay McGuinness

ITSC Member
Srinivas Murthy

ITSC Member
Alistair Nichol

ITSC Member
Rachael Parke

ITSC Member
Jane Parker

ITSC Member
Kathy Rowan

ITSC Member
Anne Turner
5. BACKGROUND & RATIONALE

5.1. Severe Community-Acquired Pneumonia

5.1.1. Introduction

This section, within the Core Protocol, provides background on the epidemiology, causes, treatment categories, and evidence base for the management of patients with severe community pneumonia. Detailed information regarding the rationale for specific interventions to which patients will be randomized within the REMAP can be found in a corresponding DSA. As the trial is intended to be perpetual, if background information changes, appropriate amendments to the protocol documents will occur periodically, but it is anticipated that this will occur predominantly by amendment of DSAs.

5.1.2. Epidemiology

CAP is a syndrome in which acute infection of the lungs develops in persons who have neither been hospitalized recently nor had regular exposure to the healthcare system. (Musher and Thorner, 2014) A wide range of micro-organisms are capable of causing pneumonia but bacteria and viruses are responsible for the vast majority of cases where a cause is identified. Severe CAP is defined as pneumonia of sufficient severity to be an immediate threat to life. In developed countries, patients with severe CAP are often admitted to an ICU or a High Dependency Unit (HDU). Throughout the remainder of this protocol, we will use the term ICU for units that provide specialized care for critically ill patients, including HDU, Critical Care Units, and Intensive Treatment Units. Although admission criteria may vary, the occurrence of admission to an ICU or a HDU can be used as an operational definition of severe CAP.

CAP is an important health problem and a common cause of death from infection globally, with lower respiratory tract infection, implicated in 3.1 million deaths in 2012, ranked as the 4th most common cause of death, although most of these deaths occur in low and middle-income countries. (Bjerre et al., 2009, Musher et al., 2013, Singanayagam et al., 2009) In developed countries, around half of patients with CAP are treated successfully without admission to hospital. (Almirall et al., 2000) Among patients who are admitted to hospital
around 10 to 20% are admitted to an ICU. (Alvarez-Lerma and Torres, 2004, Ewig et al., 2011) The population incidence of CAP that involves admission to an ICU is about 0.4 cases per 1000 per year. (Finfer et al., 2004) Among patients admitted to an ICU with CAP, case-fatality is reported to be in the range from 20 to 50%. (Alvarez-Lerma and Torres, 2004, Leroy et al., 1995, Sligl and Marrie, 2013) In low and middle-income countries, the overlapping syndromes of CAP, bronchiolitis, and bronchitis are a major public health problem and represent the world’s most important cause of disability-adjusted life years lost and the third most important cause of death. (World Health Organization, 2008)

5.1.3. Standard care for patients with severe CAP

All patients admitted to an ICU with severe CAP will receive multiple different component therapies and many of these therapies will be administered concurrently. These therapies can be grouped into the following categories: treatment of the underlying infection (including antibacterial and antiviral agents); the optional use of agents, such as corticosteroids, that modulate the host immune response to infection; and multiple supportive therapies that are used to manage organ systems that have failed or prevent complications of critical illness and its treatment (Table 1).

The choice of empiric antimicrobial therapy is generally made before a microbiologic etiology is established, both because of the lag between collection of specimens and the availability of results from microbiological tests, and because microbiological tests lack sensitivity, particularly when samples are collected after initiation of antimicrobial therapy. It is recommended that antimicrobial treatment be initiated promptly and at the point of care where the diagnosis of pneumonia is first made. (Musher and Thorner, 2014)

Examples of commonly used therapies that support failed organ systems or prevent the complications of critical illness and its treatment include oxygen therapy, invasive and non-invasive mechanical ventilation, intravenous fluid resuscitation, vasoactive drugs, dialysis, provision of nutrition, sedation, physiotherapy including mobilization, diuretic medications, suppression of gastric acid production, and mechanical or pharmacological interventions to prevent venous thromboembolism. The exact combination of supportive therapies is
influenced by the spectrum of organ failures that occurs in any individual patient. (Dellinger et al., 2013)

Table 1: Potential targets of interventions to reduce mortality in patients with CAP

<table>
<thead>
<tr>
<th>Target of intervention</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eradication of pathogens</td>
<td>Antibiotics (agents, route, dose)</td>
</tr>
<tr>
<td></td>
<td>Antivirals (agents, route, dose)</td>
</tr>
<tr>
<td></td>
<td>Microbiological diagnostic strategies</td>
</tr>
<tr>
<td>Modulation of the host immune response</td>
<td>Corticosteroid</td>
</tr>
<tr>
<td></td>
<td>Macrolides</td>
</tr>
<tr>
<td>Methods to support failing organ systems and prevention of</td>
<td>Lung ventilation strategies and respiratory salvage modalities</td>
</tr>
<tr>
<td>complications**</td>
<td>(e.g. extra-corporeal membrane oxygen, prone positioning)</td>
</tr>
<tr>
<td></td>
<td>Renal replacement therapy</td>
</tr>
<tr>
<td></td>
<td>Inotropic/vasopressor support</td>
</tr>
<tr>
<td></td>
<td>Fluid resuscitation strategies</td>
</tr>
<tr>
<td></td>
<td>Nutrition</td>
</tr>
<tr>
<td></td>
<td>Mobilization</td>
</tr>
<tr>
<td></td>
<td>Sedation</td>
</tr>
<tr>
<td></td>
<td>Venous thromboembolism prophylaxis</td>
</tr>
<tr>
<td></td>
<td>Stress ulcer prophylaxis</td>
</tr>
</tbody>
</table>
5.1.4. Treatment guidelines

A range of different guidelines have been published that are relevant to the care of critically ill patients with CAP. (Eccles et al., 2014, Lim et al., 2009, Mandell et al., 2007, Wiersinga et al., 2012, Wilkinson and Woodhead, 2004, Woodhead et al., 2011) These guidelines generally focus on recommendations related to assessment of severity, diagnostic evaluation, and empiric and guided antimicrobial therapy. Guidelines from the Surviving Sepsis Campaign are relevant to many aspects of the supportive care of the critically ill patients with CAP. (Dellinger et al., 2013)

There is a stark contrast between the substantial public health impact of severe CAP and the low quality of evidence that guides therapy. The number of treatment recommendations in guidelines that are supported by high quality randomized controlled trial (RCT) evidence is 4 of 44 for treatment recommendations in the European guidelines (Eccles et al., 2014, Lim et al., 2009, Woodhead et al., 2011), 11 of 43 in the United States guidelines (Mandell et al., 2007), and 7 of 93 in the Surviving Sepsis Campaign Guidelines. (Rhodes et al., 2017) As a consequence of the limited evidence-base there are a number of inconsistencies and even complete contradictions among international guidelines.

5.1.5. Variation in care and compliance with guidelines

Several observational studies report substantial variation in care with, for example, compliance with administration of antibiotics recommended by guidelines occurring in between 40% and 75% of patients. (Bodi et al., 2005, Frei et al., 2010, Lee et al., 2014, Shorr et al., 2006) These and other studies also report better clinical outcomes for patients who received antibiotics that were recommended by guidelines. (McCabe et al., 2009, Mortensen et al., 2004, Mortensen et al., 2005) However, it remains unclear if adherence to guideline recommendations is due to a direct causal link, or whether it is a surrogate for better quality care generally. There is also widely reported variation in compliance with many supportive therapies for patients with severe CAP, such as use of low tidal volume ventilation, type of resuscitation fluid, and thresholds for the administration of transfusion for anemia. (Bellani et al., 2016, Finfer et al., 2010, Blood Observational Study Investigators of Anzics-Clinical Trials Group et al., 2010, Cecconi et al., 2015)
5.1.6. An unmet need for better evidence

Many factors contribute to the substantial unmet need for better evidence to determine the optimal treatment for patients with severe CAP. Severe CAP is common, case-fatality is high, the strength of current evidence is limited, and there is evidence of substantial variation in existing standard care. The combination of these factors provides a strong rationale for the need for better quality evidence about the impact of the different treatment options that are in existing practice, the impact of different combinations of treatment options, and the timely and effective evaluation of new candidate interventions to improve outcomes.

5.2. Influenza pandemics and emerging pathogens

A pandemic of severe CAP caused by a known (e.g., influenza) or unknown virus, as occurred during the Severe Acute Respiratory Syndrome (SARS) outbreak, can rapidly change the etiological spectrum of severe CAP in patients who require admission to an ICU. This necessitates adaptation of empiric treatment protocols or diagnostic procedures or both. Naturally, there will be no evidence base for the medical management of such a disease at the time of its emergence, and medical decisions will be mostly based on expert opinion with extrapolation from evidence derived from the treatment of analogous clinical syndromes. There is substantial unmet need to generate evidence about the most effective treatment approaches during a pandemic or regional outbreak. Furthermore, to have impact on patient outcomes during an outbreak, evidence must be available during the pandemic. As a consequence, such evidence must be capable of being generated, disseminated, and implemented rapidly. More detailed background information about pandemics of respiratory infection, together with challenges associated with the clinical research response are outlined in the Pandemic Appendix.

5.3. Randomized Embedded Multifactorial Adaptive Platform Trials

5.3.1. Generating clinical evidence

Angus has noted several problems encountered when generating robust clinical evidence, including barriers to conducting clinical trials, the generalizability of data from populations that are too broad or too narrow, the issue of equipoise especially when comparing
different types of existing care, and the delay in translating results into clinical practice. (Angus, 2015) A REMAP provides a strategy to address many of these problems by gaining economies of scale from a common platform, which allows for broad enrollment but retaining the ability to examine for heterogeneity of treatment effects between defined subgroups. A REMAP focuses predominantly on the evaluation of treatment options for the disease of interest that are variations within the spectrum of standard care (although testing of novel or experimental therapies is not precluded) and does so by embedding the trial within routine healthcare delivery. In this regard the REMAP seeks to replace random variation in treatment with randomized variation in treatment allowing causal inference to be generated about the comparative effectiveness of different existing treatment options. The use of RAR, which allows the allocation ratios to change over time based on accruing outcomes data, maximizes the chance of good outcomes for trial participants. The embedding of such a platform within the day-to-day activities of ICUs facilitates the translation of outcomes to clinical practice as a “self-learning” system. As such, it also functions as an embedded and automated continuous quality-improvement program. A final advantage of a REMAP for pneumonia is the ability to rapidly adapt to generate evidence if new respiratory pathogens emerge, avoiding the inevitable delays associated with conventional trials in an outbreak of a new infectious diseases. (Burns et al., 2011)

5.3.2. Underlying Principles of the Study Design

A REMAP applies novel and innovative trial adaptive design and statistical methods to evaluate a range of treatment options as efficiently as possible. The broad objective of a REMAP is, over time, to determine and continuously update the optimal set of treatments for the disease of interest. The set of treatments that may be tested within a REMAP comprise the set of all treatments that are used currently or may be developed in the future and used or considered for use in the disease of interest. The design maximizes the efficiency with which available sample size is applied to evaluate treatment options as rapidly as possible. A REMAP has the capacity to identify differential treatment effects in defined sub-groups (termed strata), address multiple questions simultaneously, and can evaluate interactions among selected treatment options. Throughout the platform, patients who are enrolled in the trial are treated as effectively as possible. (Angus, 2015, Berry et al.,
A conventional RCT (i.e. a non-platform trial) makes a wide range of assumptions at the time of design. These assumptions include the plausible size of the treatment effect, the incidence of the primary outcome, the planned sample size, the (typically, small number of) treatments to be tested, and that treatment effects are not influenced by concomitant treatment options. These assumptions are held constant until the trial completes recruitment and is analyzed. (Barker et al., 2009, Berry, 2012, Connor et al., 2013) Participants who are enrolled in a conventional RCT are not able to benefit from knowledge accrued by the trial because no results are made available until the trial completes. A REMAP uses five approaches to minimize the impact of assumptions on trial efficiency and also maximizes the benefit of participation for individuals who are enrolled in the trial. (Angus, 2015, Berry et al., 2015, Aikman et al., 2013, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al., 2016, Rugo et al., 2016)

These design features are:

- frequent adaptive analyses using Bayesian statistical methods
- RAR
- evaluation of differential treatment effects in pre-specified sub-groups (strata)
- evaluation of specified intervention-intervention interactions
- testing of multiple interventions in parallel and, subsequently, in series

This creates a ‘perpetual trial’ with no pre-defined sample size, the objective of which is to define and continuously update best treatment over the life-time of the REMAP. The design aspects, including the risk of type I and type II error, are optimized prior to the commencement of the trial by the conduct of extensive pre-trial Monte Carlo simulations, modification of the trial design, and re-simulation in an iterative manner. The methods related to the application of the design features and the statistical analysis of this trial are outlined in the methods section of the protocol (Section 7). The following sections describe the background, rationale, and potential advantages of each of the design features of a REMAP (Section 5.3.4).
5.3.3. Nomenclature

A specific set of nomenclature is used to categorize potential treatments evaluated and populations within a REMAP as well as other aspects of the trial design and statistical analysis. A detailed glossary can be found in Section 1.2. Please see the glossary for the definition and explanations for the following terms: domain, intervention, regimen, stratum, state, Statistical Trigger, Platform Conclusion, and Public Disclosure.

5.3.4. Randomization and Response Adaptive Randomization

The study will randomly allocate participants to one or more interventions, with each intervention nested within a domain. In this regard, a platform trial is no different to other forms of RCT in that randomization provides the basis for causal inference. However, unlike a conventional RCT, the proportion of participants who are randomized to each available intervention within a domain will not be fixed. Rather, the trial will incorporate RAR. RAR utilizes random allocation with a weighted probability for each intervention, with the weighted probability being proportional to the extent to which similar participants recruited earlier in the trial benefited or not from each particular intervention. (Angus, 2015, Berry, 2012, Connor et al., 2013, Aikman et al., 2013, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al., 2016, Rugo et al., 2016) RAR will result in participants in each particular stratum being randomized with greater probability to interventions that are performing better within that stratum. At the initiation of a new domain or when a new intervention is added to a domain the randomization proportion of all new interventions is balanced and only changes, with the application of RAR, that takes into account uncertainty about treatment effect so as to avoid excessive variability in proportions generated by RAR until sufficient sample size has accrued.

The major consequence of RAR is that better therapies move through the evaluation process faster, resulting in trial efficiency gains. (Berry, 2012, Connor et al., 2013) The platform “learns” more quickly about the treatments we ultimately care about, i.e. those that work best. Moreover, as data accrues, newly randomized participants are more likely to receive interventions from which they benefit. (Berry, 2012, Connor et al., 2013, Meurer et al., 2012, Angus, 2015, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al.,
2016, Rugo et al., 2016) This is a highly ethical fusion of trial science with continuous quality improvement and a learning healthcare system. (Institute of Medicine, 2013) Assuming at least some interventions are better than others, the total mortality within the trial population will be lower than would have occurred with a fixed randomization proportion. It is also particularly relevant to the ethical conduct of trials that enroll critically ill patients where unanticipated increases in mortality have been seen (Dellinger et al., 2013) and to the conduct of trials during a pandemic in which there is in-built implementation of the therapies that are more likely to be beneficial during the trial. The simulations underpinning REMAP-CAP demonstrate that, in instances where particular interventions are indeed superior to others, the use of RAR will, on average, increase the odds of discovering the superiority not only with lower sample size, but with fewer participants exposed to the less efficacious therapies and, thus, fewer deaths.

There are potential disadvantages associated with RAR. It is intended that participating sites and trial investigators will be blind to the RAR proportions. One disadvantage is that, for interventions that are provided without blinding, the treating clinicians may be able to draw inference about the RAR proportions and, as a consequence, draw inference about the interim standing of interventions that are being tested in the REMAP. This could have adverse consequences including that clinicians are influenced to not enroll participants within a domain but rather directly prescribe the treatment that they believe to be doing better outside the trial. However, a number of factors mitigate this potential concern. First, it can be difficult to distinguish between patterns of sequential allocation status that are derived from fixed versus RAR. Second, extreme proportions will not be used (except where a Statistical Trigger but not a Platform Conclusion has been reached, see later). Finally, for many conditions, team-based management means that an individual clinician will directly observe only a small proportion of all participants enrolled within the trial at each participating site. Another disadvantage of RAR is that, under certain allocation rules, statistical power can be reduced. This concern is mitigated via pre-trial simulation to test the effects of different allocation rules. Furthermore, a REMAP that comprises multiple domains with multiple interventions within each domain will generally have higher, rather than lower, power as a consequence of the use of RAR. Finally, by deploying RAR rules to
minimize the odds of exposure to inferior interventions, the design is intended to motivate embedding in clinical practice, thereby resulting in more rapid recruitment.

Within each domain, RAR will be implemented for participants who are eligible to receive two or more interventions within a domain. Where a participant is eligible for only one option within a domain, this will be the treatment allocation for such a participant. In these circumstances, the provision of a treatment allocation status is made, predominantly, so as to provide a process that enhances the effectiveness of embedding, i.e. wherever possible the platform provides the treatment allocation.

5.3.5. Embedding

A trial is most efficient when all eligible participants are recognized and enrolled. Achieving universal enrollment of eligible participants increases the speed with which new knowledge is generated, maximizes internal and external validity, and minimizes operational complexity at the bedside (there is no need to distinguish between trial and non-trial patients, because all patients are trial patients). A number of strategies will be utilized to very tightly “nest” or embed trial processes in daily clinical care operations. The effectiveness of strategies to achieve embedding will be evaluated, updated, and shared with sites, taking into account different clinical processes at different sites. Wherever possible trial treatment allocations will be integrated with electronic customized order sets, produced at the point of delivery of care that also includes each site’s local care standards for concomitant therapies. This allows clinical staff to follow their typical workflow using protocolized order sheets to govern many aspects of patient care and serves to enhance compliance with the interventions allocated by the trial. The intention of embedding is that recruitment occurs 24/7 and is dependent on the usual medical staff who are responsible for patient care. Where possible electronic health records will be utilized to enhance screening and recruitment and specify the ‘order set’ for participants, including those orders that are determined by allocation status within the REMAP. While screening and recruitment for a REMAP can be conducted by research staff, it is not intended that recruitment should be dependent on research staff, particularly as such staff are typically only present during office hours. In addition to the facilitation of recruitment and high-fidelity delivery of the intervention, a further advantage is that the results of the trial can be translated rapidly.
within the ongoing REMAP so that all appropriate participants receive a treatment declared to be superior with continued allocation to that treatment option within the REMAP used to ensure implementation.

5.3.6 Multifactorial

If the trial randomizes in more than one domain of care it is multifactorial. The number of domains, at any time, is determined by a combination of the interventions that are appropriate and amenable for evaluation within the REMAP and the available statistical power, as determined by the conduct of simulations. It is intended that this REMAP will increase the number of domains, progressively, as the number of sites and rate of recruitment increases over time. The Bayesian models evaluate treatment effects (superiority, inferiority, equivalence) within each regimen but then, by isolating the effect of each intervention across all regimens in which that intervention is included, the independent effect of each intervention is estimated. The capacity to evaluate interventions within multiple domains, in parallel, increases trial efficiency substantially.

An additional advantage of the trial being multifactorial is the capacity to evaluate interactions between selected interventions in different domains. Where pre-specified, on the basis of clinical plausibility, statistical models will evaluate whether there is interaction between interventions in different domains. Where no interaction is suspected, interactions will not be evaluated as part of the \emph{a priori} statistical model.

Although participants within a REMAP will, typically, receive treatment allocations for multiple domains the decision-making regarding concomitant therapies will be made by the treating clinician in other domains of care. Treatment decisions in other domains of care will be recorded and may be analyzed, using observational methods, to evaluate candidate interventions for evaluation by randomization within the REMAP.

5.3.7 Adaptive

5.3.7.1 Frequent adaptive analyses

Frequent adaptive analyses using Bayesian statistical methods will be undertaken using Markov Chain Monte Carlo (MCMC) estimates of the Bayesian posterior probability.
distributions. The trial will utilize a set of pre-specified rules to reach conclusions regarding the effectiveness of interventions that are being evaluated. It is these pre-specified rules that determines how the trial “adapts” to the information contained in accumulating participant data. An analogy is that the ‘routes’ that a trial can take are pre-specified, within the protocol, but the exact route that the trial takes is determined by the data that accrues. Such adaptation improves statistical efficiency substantially.

5.3.7.2. Analysis of data to reach conclusions

The following structure and sequence of events will be used to reach conclusions from data as it accrues and is analyzed. This document, the Core Protocol, sets out the pre-specified rules for interpreting the results of analyses. These rules include pre-specified threshold levels of probability for achieving superiority, inferiority or equivalence of interventions within a domain. At each adaptive analysis the Statistical Analysis Committee (SAC) evaluates whether one or more probability thresholds that are derived from the trial’s statistical model have been exceeded. When the model indicates one or more of superiority, inferiority, or equivalence has occurred this is termed a Statistical Trigger. A Statistical Trigger may be reached for one or more strata at any given adaptive analysis.

The occurrence of a Statistical Trigger is communicated immediately to the trial DSMB by the SAC. The DSMB has primary responsibility for determining if a Statistical Trigger should lead to a Platform Conclusion. The declaration of a Platform Conclusion results in the removal of inferior intervention from randomization options or removal of all other interventions if an intervention is declared as superior. A Platform Conclusion will be communicated to the ITSC who have responsibility for immediate dissemination of the result by presentation and publication of the result.

The algorithm by which a Platform Conclusion is reached is different for Statistical Triggers of superiority or inferiority, compared to those triggers that arise because of equivalence. Where the Statistical Trigger is for superiority or inferiority, so long as the DSMB is satisfied that the Statistical Trigger has been met validly, the default position is that the DSMB will declare this result as a Platform Conclusion. The only exception to this situation is if there is a need to evaluate potential interactions between treatments in different domains. In this
circumstance the randomization schedule will be adapted (all participants receive the superior intervention or randomization to one or more inferior interventions is removed) but Public Disclosure may be delayed until evaluation of the interaction is completed.

Where the Statistical Trigger is for equivalence the DSMB will evaluate clinically relevant secondary endpoints. The results, in relation to both primary and secondary endpoints, will be communicated to the ITSC. The DSMB, in conjunction with the ITSC, may declare a Platform Conclusion (for equivalence) or may opt to continue recruitment and randomization to the ‘equivalent’ interventions, for example, to allow a conclusion to be reached regarding clinically important secondary endpoints, to allow additional accrual to narrow the margin of equivalence (for example where health economic issues are relevant), or to allow evaluation of an interaction).

The pathway for and potential outcomes from each adaptive analysis is displayed in Figure 3.
5.3.7.3. **Probability thresholds**

In this REMAP the pre-specified rules are that, at any adaptive analysis, an intervention will be declared “superior,” if it has at least a 0.99 posterior probability of being the best intervention within its domain. An intervention will be declared “inferior” if it has a less than 0.01 probability of being the best intervention within its domain. Intervention equivalence is declared between two factors when there is at least a 0.90 posterior probability of the rate of the primary endpoint falls within a pre-specified delta.
5.3.7.4. Analysis within and between strata

The frequent adaptive analyses will evaluate the primary endpoint, within one or more stratum. Where specified, the statistical models for each strata will be able to ‘borrow’ information from adjacent strata leading to the declaration of a Statistical Trigger in one, more, or all strata. The extent to which borrowing occurs is dependent on the pre-specified structure of the model and the degree of statistical congruence of treatment effect between stratum. Where treatment effects are divergent between stratum there is less ‘borrowing’. The capacity to evaluate strata is particularly important for interventions that might plausibly have differential, including opposite, treatment effects in different strata. (Dellinger et al., 2013, Finfer et al., 2004, The Acute Respiratory Distress Syndrome Network, 2000) In traditional trial designs, divergent treatment effects among sub-groups may cancel each other out and this is one plausible explanation for the trials that report no overall difference in outcome. It should be noted that strata can be different for different domains and that strata can be changed over time (in conjunction with amendment of the protocol).

If a Platform Conclusion is reached just within a single stratum, this leads to cessation of randomization within that stratum, while continuing to randomize in other strata. It is acknowledged that a Platform Conclusion in one strata may rely on ‘borrowing’ from adjacent strata and that analysis just within a strata may yield a result that is different. Nevertheless, a Platform Conclusion is still regarded as valid if it relies upon borrowing from adjacent strata and will be reported and published including the extent to which it relies on borrowing.

5.3.7.5. Frequency of adaptive analyses

Adaptive analyses will occur frequently, with the frequency being approximately proportional to the rate of recruitment, and will be a largely automatic process; the frequency is chosen to balance logistical demands with the goal of learning rapidly from accumulating data. While this process will be overseen by an independent DSMB, the DSMB will not make design decisions unless the trial’s algorithms are no longer acceptable from an ethical, safety, or scientific point of view. The DSMB, in conjunction with the ITSC, having reached a Platform Conclusion, and in deciding to terminate an intervention or domain (in
conjunction with a Public Disclosure), may take into account one or more issues such as the value of continuing randomization so as to evaluate additional clinically relevant endpoints or to evaluate potential interactions, as well as take into account the opportunity cost associated with not moving to introduce new domains or interventions.

5.3.7.6. Advantages of adaptive analysis

The major advantage of this type of analysis approach is that a conclusion is reached when there is sufficient information to support the conclusion, rather than when enrollment reaches a predetermined sample size. This approach allows a result to be obtained as quickly as possible with appropriate sample size. It also avoids indeterminate results by continuing randomization until either superiority, inferiority, or equivalence is concluded. (Barker et al., 2009, Berry, 2012, Connor et al., 2013, Meurer et al., 2012, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al., 2016, Rugo et al., 2016) An additional advantage is that dissemination of such results does not interrupt the conduct of the platform. In a single REMAP, there is no need for the “start-and-stop” periods that would typically occur under the alternative approach of multiple separate trials. These “downtime” periods can be quite extensive and carry a number of disadvantages. First, there is a lot of duplicative effort every time a near-identical treatment protocol goes through the appropriate development and approval processes. Second, clinical investigation units must maintain a certain infrastructure, and that infrastructure can be expensive to maintain during periods when participants are not being enrolled or expensive to recreate if the infrastructure degrades. Third, downtime is simply one more contributor to delay in the production of scientific knowledge. Participants at large benefit from earlier production of knowledge regardless of whether new information demonstrates a therapy is effective or ineffective. Finally, the inevitable start up delay before a trial can “go live” can wipe out any possibility of conducting effective research during time-critical situations such as a pandemic.

5.3.7.7. Substitution of new domains and interventions within the REMAP

It is intended that the REMAP will be ‘perpetual’. In conjunction with a Platform Conclusion being reached, the ITSC takes responsibility for determining what new questions will be
introduced to the REMAP including adding one or more new interventions to a domain or adding one or more new domains. In a REMAP, the sample size is not fixed, rather maximum use is made of the available sample and more questions may be asked for the same monetary investment. (Barker et al., 2009, Berry, 2012, Connor et al., 2013, Meurer et al., 2012, Aikman et al., 2013, Bhatt and Mehta, 2016, Park et al., 2016) The only limit on the duration of a platform trial is the availability of ongoing funding, the availability of new interventions to evaluate, and that the disease continues to be a public health problem. The ITSC responsible for the REMAP will develop appropriate processes for identifying and prioritizing the selection of new interventions and domains that are introduced progressively into the REMAP over time.

How the domains and interventions within a REMAP might evolve over time is depicted in Figure 4.
5.3.8. Nesting of the REMAP within a Registry

The REMAP can also be nested within a registry, with the registry recording information (typically a subset of the trial Case Report Form (CRF)) in all participants who met the REMAP entry criteria, or an expanded set of entry criteria, but who, for any reason, were not randomized. Information obtained from eligible but not randomized participants can be useful for evaluating the external validity of results and optimizing recruitment. Evaluation of non-randomized treatments received by all participants, both randomized and non-randomized, can be used to identify the consequences of natural variation in care so as to identify interventions that should be prioritized for evaluation by randomization within the REMAP. (Byrne and Kastrati, 2013) The design features of the trial and the conceptual advantages associated with each design feature are summarized in Table 2.
If a registry component is included the operation of the registry will be specified in a DSA that applies only to the registry aspects of the study.

5.3.9. Platform

Platform trials simultaneously evaluate multiple potential therapies, where the focus is on finding the best treatment for the disease, rather than precisely characterizing the effect of each intervention in isolation. (Angus, 2015, Berry et al., 2015, Bhatt and Mehta, 2016, Carey and Winer, 2016, Park et al., 2016, Rugo et al., 2016, Harrington and Parmigiani, 2016) Thus the goals of a platform trial are much more aligned with the goals of clinical care than a traditional, narrowly focused phase III RCT of a single agent. All of the component design features of a REMAP have been used previously and have accepted validity. What is innovative and novel, for a REMAP, is the combination of all of these design features within a single platform combined with their use for phase III evaluations and by using embedding to integrate the trial within routine clinical care.

Table 2: Features of a REMAP that contribute to advantages of the design

<table>
<thead>
<tr>
<th>Feature</th>
<th>Efficient use of information</th>
<th>Safety of trial participants</th>
<th>Avoiding trial down-time</th>
<th>Fusing research with care</th>
<th>Determining optimal disease management</th>
<th>Self-learning healthcare system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifactorial</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Response Adaptive Randomization</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Embedding</td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Frequent adaptive analyses</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Analysis of strata</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Evaluation of interaction</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Substitution of new interventions</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>
6. OBJECTIVES

6.1. Primary objective

The primary objective of this REMAP is, for adult patients with severe CAP who are admitted to an ICU, to identify the effect of a range of interventions to improve outcome as defined by all-cause mortality at 90 days.

6.2. Secondary objectives

The secondary objectives are to determine, for adult patients with severe CAP who are admitted to an ICU, the effect of interventions on ICU mortality, ICU length of stay (LOS), hospital LOS, ventilator free days (VFDs) censored at 28 days, organ failure free days (OFFDs) censored at 28 days, other endpoints as indicated for specific domains, and, where feasible or specified in a DSA, survival at 6 months, health related quality of life (HRQoL) assessed after 6 months using the EQ5D and disability assessed after 6 months using the World Health Organization Disability Assessment Schedule (WHODAS).

7. SUMMARY OF TRIAL DESIGN

7.1. Introduction

This is a REMAP that aims to test many interventions in a number of domains with the primary outcome being the all-cause mortality at 90 days. Frequent adaptive analyses will be performed to determine if an intervention is superior, inferior, or equivalent to one or more other interventions to which it is being compared, within a domain. A Bayesian analysis method will be used to evaluate superiority, inferiority, or equivalence, as well as to inform the adaptive randomization strategy within each domain. Where it is anticipated that interactions between interventions in different domains may be likely the statistical models will allow evaluation of such interactions. Where the statistical models evaluate such an interaction the models can incorporate the relative likelihood of such interactions, but with possibly low prior probability in cases where it is biologically implausible for interactions to occur. Each intervention within each domain will be evaluated within prospectively defined and mutually exclusive strata (sub-groups) of participants but
information from one stratum may be used (via ‘borrowing’) to contribute to the analysis of
the effect of that intervention in other strata. Interventions that are found to be inferior, for
a specific stratum, are removed from use in that stratum, and will, typically, be removed
from the REMAP allowing new interventions or domains or both to be introduced. An RAR
algorithm will be used to preferentially randomize participants to interventions that appear
to be performing better. Extensive simulation studies have been performed to define the
type I error, power to detect specified differences, and demonstration of equivalence as
well as a broad range of operating characteristics. It is planned that further simulation
studies will be conducted in conjunction with consideration of the introduction of new
interventions or domains or both into the REMAP. The intention-to-treat (ITT) principle will
be used for all primary analyses.

The key structure of the REMAP is outlined in Figure 5.

*Multifactorial
randomization
proportions vary
depending on results
from previous
patients.

**When superiority, inferiority, or equivalence are
demonstrated domains or interventions are adapted,
including one or more of:
- Mandate as superior intervention
- Remove inferior intervention(s)
- Add new intervention(s)
- Cease domain, add new domain (equivalence only).
7.2. Nomenclature

A specific set of nomenclature is used to categorize potential treatments evaluated and populations within a platform trial as well as other aspects of the trial design and statistical analysis. A detailed glossary can be found in Section 1.2. Please see the glossary for the definition and explanations for the following terms: domain, intervention, regimen, stratum, state, Statistical Trigger, Platform Conclusion, and Public Disclosure. The following section can only be understood in the context of an understanding of the definition and meaning of these specific terms.

7.3. Study setting and participating regions

The trial will recruit only participants who are admitted to an ICU. An ICU is defined as a location that identifies itself as an ICU (or HDU) and is able to provide at least non-invasive ventilation and continuous administration of vasoactive medications. By agreement with the RMC, the definition of an ICU may include a general ward in which a patient is under the care of an Intensive Care Specialist (Intensivist), but resource limitations prevent the immediate delivery of care occurring in the ICU. It is intended that the trial will be conducted in multiple regions. A region is defined as a country or collection of countries with study sites for which a RMC is responsible. The country or countries for which a RMC are responsible, as well as all aspects of trial conduct that are specific to each region, are described in the RSAs.

Participating ICUs will be selected by a RMC based on response to an expression of interest and fulfilling pre-specified criteria including number of beds in the ICU, annual admissions for severe CAP, resources available to support research activities, and track record in conducting investigator-initiated multicenter trials.

The current regions are:

- Europe, with funding from a European Union FP7 grant (FP7-HEALTH-2013-INNOVATION-1, grant number 602525), to support the enrollment of 4000 participants. This funding terminates in 2021.
• Australia and New Zealand. In Australia the project has received funding from a NHMRC Project Grant (APP1101719), to support the enrollment of 2000 participants. This funding terminates in December 2021, although some extension may be feasible. In New Zealand the project has received funding from a HRC Programme Grant (16/631), to support the enrollment of 800 participants. This funding terminates in November 2021.

• Canada. In Canada the project has received funding for a CIHR grant (158584), to support the enrollment of 300 participants. This funding terminates in 2022.

It is intended that additional regions will be added if funding can be secured in other locations. It is desirable that the REMAP is active in as many locations as possible. There is no upper limit to the number of regions and the number of participating sites.

7.4. Eligibility criteria

The eligibility criteria for the REMAP are applied at two levels. One level is that there are inclusion and exclusion criteria that determine eligibility for randomization within the REMAP. The other level is that, once eligible for inclusion within the REMAP, additional criteria, typically exclusion criteria, are applied that are specific to the level of the domain. A patient is eligible for inclusion within a domain when:

- all REMAP inclusion criteria are present
- none of the REMAP exclusion criteria are present
- Domain-Specific criteria are met

As such, the key “inclusion criteria” for being eligible for a domain are that the patient is eligible for the REMAP. Criteria for inclusion in the registry, in which patients do not receive any randomized intervention, may be broader than the entry criteria for the REMAP (i.e. it is only a subset of registry eligible patients who are eligible for randomization within the REMAP).

7.4.1. REMAP Inclusion Criteria

In order to be eligible to participate in this trial, a patient must meet both of the following criteria:
1. Adult patient admitted to an ICU for acute severe CAP within 48 hours of hospital admission with
 a. symptoms or signs or both that are consistent with lower respiratory tract infection (for example, acute onset of dyspnea, cough, pleuritic chest pain) AND
 b. Radiological evidence of new onset infiltrate of infective origin (in patients with pre-existing radiological changes, evidence of new infiltrate)

2. Up to 48 hours after ICU admission, receiving organ support with one or more of:
 a. Non-invasive or invasive ventilatory support;
 b. Receiving infusion of vasopressor or inotropes or both

7.4.2. REMAP Exclusion Criteria

A potentially eligible patient who meets any of the following criteria will be excluded from participation in this trial:

5. Healthcare-associated pneumonia:
 a. Prior to this illness, is known to have been an inpatient in any healthcare facility within the last 30 days
 b. Resident of a nursing home or long-term care facility.

6. Death is deemed to be imminent and inevitable during the next 24 hours AND one or more of the patient, substitute decision maker or attending physician are not committed to full active treatment.

7. Previous participation in this REMAP within the last 90 days

7.4.3. Domain-Specific Entry Criteria

Each domain may have additional, domain-specific eligibility criteria, typically just exclusion criteria, although a combination of inclusion and exclusion criteria can be specified. Patients who fulfill the Overall REMAP Eligibility Criteria will be assessed for enrollment into all domains that are active at a site. A participant enrolled in the trial will receive the number of REMAP-specific interventions equivalent to the number of Domains to which they are enrolled. The additional eligibility criteria that are specific to a domain are provided in each DSA.
Where a participant has an exclusion criterion to one or more interventions within a domain, but there are at least two interventions within that domain to which the participant is eligible the patient will be randomized to receive one of the interventions to which the participant is eligible.

7.5. Interventions

7.5.1. Domain-Specific Information

All information related to the background, rationale, and specification of interventions that will be administered within the trial are located in the DSAs. The minimum number of interventions within a domain is two and the maximum number is limited only by statistical power. Each RMC will select the interventions that will be available within a domain that will be offered to participating sites in that region but the default position is that all interventions that are available and feasible in that region or country should be offered to sites. Individual participating sites will select the interventions within a domain that will be available at their site with the default position being all available interventions. The randomization program will only provide treatment allocations that are permitted at each participating site. This allows interventions that are not necessarily available in all regions, for example because of licensing reasons, to be included within the REMAP. Within the context of comparative effectiveness research, this also allows sites to determine the interventions that are within their usual or reasonable spectrum of care. However, the viability of a domain is dependent on at least one intervention being available in all regions and being available at a substantial majority of participating sites. This level of ‘connectedness’ is necessary for the validity of the statistical models that are used to analyze trial results.

7.5.2. Treatment allocation and Response Adaptive Randomization

Random allocation of treatment status forms the basis of all evaluations of causal inference. RAR will be used to vary the proportion of participants who are allocated randomly to each available intervention. Randomization is done at the regimen level, where a regimen is a selection of one intervention from each domain. The proportion of participants who receive a specified regimen will be determined by a weighted probability, with that probability
being determined by the probability, taking into account all accrued data, of that regimen being the optimal regimen. RAR will result in participants being randomized with higher probability to interventions that are performing better.

The proportions that are specified by RAR are determined only by analysis of the primary outcome measure in participants who have completed 90 days of follow-up from the time of enrollment. Although outcome may be known before 90 days (death in hospital) the time at which these alternate events occur may be different. By only including participants in the analysis models that determine the RAR proportions potential bias that arises from different events occurring with different patterns of timing within the 90 day follow up period is avoided. The same statistical model will be used to both analyze the results of the REMAP as well as specify the randomization proportions.

RAR weights reflect the probability each particular regimen is the most effective over all possible regimens within each stratum. The probability a regimen is optimal reflects not just the point estimate of difference in outcomes, but also the uncertainty around that estimate. At initiation of a new domain, the proportion of participants allocated to each intervention is balanced (i.e. all interventions have equal proportions). The RAR proportions are then updated at the first adaptive analysis and at all subsequent adaptive analyses. When sample sizes are small, such as at the initiation of a domain, credible (probability) intervals are wide, and therefore randomization proportions remain close to being balanced among all regimens (i.e. randomization weights are weak and allocation remains close to balanced). When a new intervention is added to an existing domain it will commence with balanced randomization and the randomization weights will be updated with each adaptive analysis but will remain weak until sample size for the new intervention accrues.

As the data accrues and sample sizes increase, if the probability an intervention is part of the optimal regimen becomes large, but not large enough to claim superiority, the randomization proportions will be capped. This is done because interventions are provided on an open-label basis and extreme ratios would be at risk of allowing clinicians who recruit participants to draw inference about the effectiveness of individual interventions or regimens.
Some domains may have more than two interventions and it is possible that participant- or site-level characteristics may result in one or more interventions within a domain not being appropriate for an individual participant (for example, known intolerance to one of the interventions or a machine that is necessary to deliver an intervention not being available). Where a participant is unable to receive one or more interventions, but there are still two or more available interventions, random allocation will still be performed using RAR. However, interventions that are not available will be ‘blocked’ and the remaining RAR proportions will be divided by one minus the sum of the unavailable proportions and applied to the available interventions.

A detailed description of the statistical models and the application of RAR is outlined in the Statistical Analysis Appendix.

7.5.3. Adaptation of Domains and Interventions

Over the lifetime of this REMAP, it is anticipated that new interventions will be added to the starting domains and new domains initiated, including domains that are planned for activation in the event of a pandemic. The addition of interventions within existing domains, and the creation of new domains, will be considered according to a set of priorities and contingencies developed by the ITSC and are dependent on existing or new clinical need and there being sufficient statistical power available within the REMAP. All new interventions and domains will be subject to ethics and regulatory approval prior to initiation.

A domain in which an intervention is identified as being superior and for which there are no new interventions that are appropriate to be introduced will continue as a domain within the REMAP but with all participants allocated to receive the superior intervention. Interventions that are identified as being inferior will be removed from a domain, with or without replacement, as appropriate. If all interventions are identified to have equivalence the ITSC will consider options that include cessation of the domain or continuation of the domain with a smaller delta.

The implementation of adaptations that occurs as a consequence of declaration of a Platform Conclusion may be limited by availability of an intervention in some locations. For example, if a superior intervention was not available (for licensing or site-specific reasons)
all inferior options would be removed only at the sites where the superior option is available. Randomization to remaining interventions would likely continue at those sites until the superior intervention is available at those sites.

7.6. Endpoints

The primary outcome for this REMAP will apply to all domains. Secondary outcomes generic to all Domains are provided in this Core Protocol below. Secondary outcomes specific to individual domains are provided in the relevant DSAs. The Primary Endpoint (or the endpoint that is used for RAR) may be modified during a pandemic and will be outlined in the Pandemic Appendix.

7.6.1. Primary Endpoint

The primary endpoint for all domains will be all-cause mortality at 90 days.

7.6.2. Secondary Endpoints

A set of generic secondary endpoints will be evaluated in all domains. Additional secondary endpoints may be specified for a domain within the DSA. Some domain-specific secondary endpoints may be specified as Key Domain-Specific Endpoints and will be interpreted in conjunction with the primary endpoint in determining the overall effectiveness of interventions.

The generic secondary endpoints for the trial are:

ICU outcomes:

- ICU mortality censored at 90 days;
- ICU LOS censored at 90 days;
- VFDs censored at 28 days;
- OFFDs censored at 28 days;
- Proportion of intubated participants who receive a tracheostomy censored at 28 days;

Ventilator- and organ failure-free days will be calculated by counting the number of days that the participant is not ventilated or has no organ failure. If a participant dies during the
hospitalization during which enrollment occurred, the number of VFDs or OFFDs will be set to zero. If the participant is discharged alive from hospital, the remainder of days censored at 90 days are counted as ventilator- or organ failure-free days.

Hospital outcomes:

- Hospital LOS censored 90 days after enrollment;
- Destination at time of hospital discharge (characterized as home, rehabilitation hospital, nursing home or long-term care facility, or another acute hospital);
- Readmission to the index ICU during the index hospitalization in the 90 days following enrollment;

The index hospital admission is defined as continuing while the participant is admitted to any healthcare facility or level of residence that provides a higher level of care than that corresponding to where the participant was residing prior to the hospital admission. (Huang et al., 2016) This definition is used commonly in ICU trials. Participants who have been and still are admitted to a healthcare facility 90 days after enrollment are coded as being alive.

Day 90 all-cause mortality will be collected in all regions. Additional outcomes will be collected, where feasible, may be mandated in a DSA or a RSA, may be collected by central trial staff or site staff, and will comprise:

- Survival at 6 months after enrollment (where feasible, refer to relevant regional RSA)
- HRQoL at 6 months after enrollment using the EQSD-5L (where feasible, refer to relevant regional RSA)
- Disability status measured at 6 months after enrollment using the WHODAS 2.0, 12-item instrument (where feasible, refer to relevant regional RSA)

7.7. Bias Control

7.7.1. Randomization

Randomization will be conducted through a password-protected, secure website using a central, computer-based randomization program. Randomization will be at the patient level and occur after data necessary to implement the inclusion and exclusion criteria have been entered into the secure randomization website. The RAR will occur centrally as part of the
computerized randomization process. Sites will receive the allocation status and will not be informed of the randomization proportions. Each region will maintain its own computer-based randomization program that is accessed by sites in that region but the RAR proportions will be determined by a SAC and provided monthly to the administrator of each region’s randomization program who will update the RAR proportions.

7.7.2. Allocation concealment

Allocation concealment will be maintained by using centralized randomization that is remote from study sites.

7.7.3. Blinding of treatment allocation

The default position within the REMAP is that treatments determined by randomization will be provided on an open-label basis. However, the blinding of treatment status is not precluded within the REMAP. If required, details related to blinding of interventions will be specified in the DSAs.

7.7.4. Blinding of outcome adjudication

The primary outcome of all-cause mortality censored at 90 days is not subject to ascertainment bias. Wherever possible, trial management personnel, who are blinded to allocation status, will conduct any follow up after discharge.

7.7.5. Follow up and missing data

Regional trial management personnel will perform timely validation of data, queries and corrections. Any common patterns of errors found during quality control checks will be fed back to all sites. Data management center study personnel performing site checks will be blind to the study allocation. Missing data will be minimized through a clear and comprehensive data dictionary with online data entry including logical consistency rules. If values necessary for the Bayesian modelling of the primary endpoint and the RAR are missing they may be imputed, using available data. For example, if strata or state is missing, it will be multiply imputed based on the available variables and a prior distribution on the
relative prevalence of each strata or state. Values for the primary endpoint will not be imputed. Additional details are provided in the Statistical Analysis Appendix.

7.8. Principles of Statistical Analysis

7.8.1. Preface

The purpose of this section of the protocol is to introduce and summarize the statistical methods that will be used to analyze data within the REMAP. This section duplicates some of the information provided in the Statistical Analysis Appendix but this section is intended to be accessible to individuals with an understanding of common clinical trial designs and classical frequentist analytical methods but without necessarily having training in Bayesian statistics. Interpretation of this section also requires an understanding of the meaning of specific terms for which definitions are provided in the glossary (see Section 1.2).

A formal description of the adaptive Bayesian data analysis methods fundamental to the REMAP design, which assumes substantial familiarity with Bayesian calculation of posterior distributions conditioned on observed data, is located in the Statistical Analysis Appendix. There is some limited overlap between these two sections of the protocol so that each may serve an appropriate audience as a standalone description of the statistical methods.

7.8.2. Introduction

Within the REMAP, two or more interventions within a domain are evaluated and sequential Bayesian statistical analyses are used over time to incorporate new trial outcome information to determine if an intervention is superior, if one or more interventions are inferior in comparison to all other interventions, or if one or more pairs of interventions are equivalent, with respect to the primary endpoint. Every participant will be assigned a set of interventions, comprising one intervention from each domain for which the participant is eligible. The combination of interventions to which a participant is assigned comprises the regimen and the regimens are the available arms in the trial. Participants will be classified by membership in different populations defined by one or more strata. The unit-of-analysis for a domain is the most granular level, defined by one or more stratum, or a state, within which the treatment effect of interventions within that domain may vary in the statistical
model. Participants are also classified by the criteria that determine eligibility for each domain.

Inference in this REMAP is determined by analyses using pre-specified statistical models that incorporate region, country, time periods, age, and disease severity to adjust for heterogeneity of enrolled participants that might influence risk of death. These models incorporate variables that represent each intervention assigned to participants and possible interactions between interventions in different domains. The efficacy of each intervention within a domain may be modeled as not varying in any of the strata, or possibly varying in one or more of the different strata in the REMAP. Where the efficacy of each intervention within a domain is modeled as possibly varying, borrowing between strata is permitted. The unit-of-analysis that will be modeled may comprise the entire population (i.e. no categorization by strata is applied) or may be defined by one or more stratum. The unit-of-analysis and whether borrowing can occur between strata is pre-specified for each domain. At each analysis the current active statistical model (or models) is (are) used, and may include patients who were enrolled when previous versions of the model were being used. The current model is described in an operational document, maintained by the SAC. Unless otherwise specified (see Section 8.12) modifications and implementation of modifications to the model require the approval of the ITSC and do not require a protocol amendment.

Whenever a model hits a predefined threshold for any of superiority, inferiority, or equivalence for an intervention with respect to the primary endpoint, this is termed a Statistical Trigger. At any given adaptive analysis, a Statistical Trigger may be reached for all participants or for one or more stratum and will be reviewed immediately by the DSMB. When a Statistical Trigger is confirmed by the DSMB, based on a thorough review of the data including an evaluation of the proportion of patients for whom monitoring of variables that contribute to the model has been completed, and totality of evidence, and where no compelling reason exists not to reach a conclusion (see Section 7.8.9) regarding that question the result that has led to a Statistical Trigger will be specified to be a Platform Conclusion. The declaration of a Platform Conclusion will lead to appropriate modification of the interventions available within that domain and a Public Disclosure of the result. A
Statistical Trigger can be considered as a mathematical threshold, whereas a Platform Conclusion is a decision regarding one or more interventions within a domain.

7.8.3. Target populations (strata and states) and implications for evaluation of treatment-by-treatment and treatment-by-strata interactions

7.8.3.1. Introduction

In a clinical trial there are many different potential participant-level covariates. A covariate can be a demographic variable that remains unchanged throughout the trial (i.e. age or gender) or a variable representing the severity or course of the disease that can vary over time (i.e. it can be assessed at the time of enrollment and at other times after enrollment during the course of the illness). In this REMAP, there are two special roles for a subset of these potentially time-varying covariates.

First, covariates determined at the time of enrollment that are identified in the design as possibly having differential treatment effect (i.e. interventions may have differential efficacy for the different levels of the covariate) are referred to as strata. Strata are used to define the unit-of-analysis for a domain within a model. Strata are a recognized element in Platform Trials.

Second, within this REMAP, there is interest in studying domains that are relevant for a target population or defined disease state that, while it may be present at the time of enrollment for some participants, may only occur after enrollment for other participants and may never occur for another set of participants. This disease state could be identified by the same covariate that might also have been used to define a strata (but doesn’t have to have been). In this regard, the concept of ‘state’ is used to define participants with characteristics that define a target population that will be evaluated by a domain, analyzed within the REMAP, and for which the characteristics can be present at the time of enrollment or may develop after the time of enrollment. State can also be used to define the unit-of-analysis for a domain within the model.

The appropriate statistical handling of the analysis of patients who become eligible for a domain as a consequence of entering a state, after the time of enrollment, requires the use
of models that take into account that the likelihood of entering the state after enrollment may have been influenced by the allocation status for other domains that specified the initiation of interventions that commenced at the time prior to entry into the state.

This evolution of Platform Trial design, to include ‘state’ is a new extension that has not been considered within Platform Trials conducted previously.

7.8.3.2 Stratum

A covariate in the REMAP that can be used as a unit-of-analysis within a Bayesian statistical model that allows for the possibility of differential treatment effects for different levels of the variable is referred to as a strata. The covariate is classified into mutually exclusive and exhaustive sets for analysis of treatment effect, as well as for defining separate RAR. The criteria that define a stratum are based on a characteristic that is present at or before the time of enrollment.

The simplest structure for strata is a single dichotomous stratum variable, which divides participants in the REMAP into two stratum. More complex arrangements are possible, such as a single strata variable that is ordinal or two (or more) dichotomous or ordinal strata variables the combination of which defines a single stratum (i.e. there are 2^N stratum when there are N dichotomous stratum variables).

The number of strata variables and the number of strata within the REMAP may be varied, depending on the impact of such decisions on statistical power, as determined by simulations. The modeling of strata may assume no differential effect for some domains. This may occur in two ways. Firstly, when the strata structure defines the entry criteria for a domain. Secondly, when two or more stratum are combined within a single unit-of-analysis (i.e. the unit-of-analysis comprises two or more stratum). If the unit-of-analysis comprises less than all available strata the analysis that is performed assumes that treatment effect does not vary between stratum combined within a common unit-of-analysis. The RAR is applied according to the model. So, the RAR applies to the patients that comprise the unit-of-analysis, irrespective of whether the unit-of-analysis comprises a single stratum or two or more stratum.
A strata variable can be set that is maintained as a silent or ‘sleeping’ strata which becomes active under pre-defined circumstances, such as the occurrence of a pandemic. In this situation, during the inter-pandemic period, all participants are categorized as non-pandemic but, during a pandemic, a distinction is made between patient with proven or suspected pandemic infection and patients in whom pandemic infection is neither proven nor suspected.

The *a priori* defined strata that are used for determination of results and for RAR may be changed during the life of the REMAP as knowledge is accumulated and, if this occurs, will result in amendment of one or both of the Core Protocol and DSAs. Data from patients enrolled before the change in the strata can be used to determine priors that are incorporated into the model at the outset of the incorporation of the new strata into the model.

7.8.3.3. Treatment-by-strata interactions: borrowing between strata

Where specified in the statistical model, the treatment effect of an intervention is allowed to vary between different strata. A Bayesian Hierarchical Model (BHM) is used for all treatment-by-strata interactions. In the BHM a hyperprior is used for the differing treatment effects across strata. The standard deviation of the hyperprior, gamma, is a modeling starting estimate for the variation in the magnitude of the difference in treatment effects between strata. By default, the starting estimate of the difference is zero. The gamma parameter influences the extent to which the treatment effect of different interventions is permitted to vary between strata. At the commencement of a model, the gamma parameter must be set, for each domain-strata pair.

In this REMAP, only three options are permitted with respect to specifying the gamma parameter for each domain-strata pair. Firstly, gamma may be set to zero. The effect of this is that treatment effect of an intervention is not permitted to differ between specified strata. The unit-of-analysis is not sub-divided according to the stratum variable. If gamma is set to zero for all strata for a domain, the unit of analysis is all patients randomized in that domain. Secondly, and at the opposite extreme, gamma can be set to infinity. In this situation treatment effect is evaluated separately and independently in each stratum (with
no borrowing between stratum). Thirdly, gamma may be set to a defined number between zero and infinity. This parameter value cannot be varied for different domain-strata pairs, a global REMAP value has been selected. This specified value for gamma places a constraint on the variance of the difference in treatment effect in different stratum but permits the model to estimate treatment effect in one stratum by borrowing from other stratum. Borrowing occurs to the extent that it is supported by the accumulated data, but the setting of gamma influences the amount of borrowing and how quickly borrowing is able to occur. The value of gamma that has been chosen has been determined by simulations to achieve a compromise between type I and type II error in baseline scenarios that assume either equivalence or superiority. Where a value for gamma is specified in the model, in this REMAP the value of gamma will be 0.15.

The specification of gamma determines the unit of analysis in the model and the extent of borrowing. For each domain-strata pair, the unit of analysis can be all patients (gamma = zero), each stratum with borrowing (gamma = 0.15), or each stratum separately (gamma = infinity).

The gamma that will be set, and hence the unit-of-analysis, for each domain-strata pair is specified in each DSA.

7.8.3.4. Analysis set for strata, timing of enrollment and timing of information regarding strata membership

It has already been specified that the criteria that define a stratum must be present at or before the time of enrollment. In some situations, the information necessary to determine membership of a stratum may become available after the time of enrollment or may be acquired from information derived after enrollment where the understanding of biology of a disease makes it reasonable to assume that the criteria was met at the time of enrollment. This situation might apply to status with respect to a particular pathogen where results of microbiological testing are not available until after enrollment or when the sample that is tested is not collected until after enrollment.

In this situation randomization is permitted within patients where the criteria is suspected or proven at the time of randomization. With regards to possible infection with a specified
pathogen, suspected or proven infection at the time of randomization is sufficient to allow an allocation status to be made. For a patient with suspected infection, membership within the strata is defined by the final test results, but a patient who is suspected but is never tested is analyzed as a positive. If a Platform Conclusion is reached for one or more stratum, analyses will also be done on patients with suspected infection who receive the intervention but who turn out to be negative. Whether borrowing between strata is permitted will be specified in the DSA.

7.8.3.5. State

A state is a clinical condition of a participant that may change during the course of their treatment. The different states within the REMAP are used to define possible eligibility of the participant for different domains at different times in the trial. A state is a set of mutually exclusive categories, defined by characteristics of a participant, that are dynamic in that they can change for a single participant, at different time-points, during the participant’s participation in the REMAP.

The number of state variables and the number of states within the REMAP may be varied, depending on the impact of such decisions on statistical power, as determined by simulations. The same state may be shared by one or more domains but may be different in different domains. The \textit{a priori} defined states that are used for determination of results and for RAR may be changed during the life of the REMAP as knowledge is accumulated or as domains change and, if this occurs, will result in amendment of one or both of the Core Protocol or DSAs. Data from patients enrolled before the change in the state can be used to determine priors that are incorporated into the model at the outset of the incorporation of the new state into the model.

7.8.3.6. Timing of randomization and revealing of allocation status

Several different scenarios are recognized that represent different combinations of randomization within a stratum or a state and by the options for the time (at enrollment or later) at which administration of the allocated intervention is commenced.
At the time of enrollment, all participants, are randomized to one intervention in every domain for which the participant is eligible for at enrollment or might become eligible for depending on the progression of the state of their illness (i.e. randomization occurs once and only once at the time of enrollment).

For participants, who at the time of enrollment are eligible for a domain and for which the intervention will be commenced immediately, the allocation status is revealed immediately and the participant then commences treatment according to their allocated intervention. This is referred to as **Randomization with Immediate Reveal and Initiation**.

In circumstances where the participant is eligible for inclusion in the REMAP but is not eligible for a domain at the time of enrollment but might become eligible if the participant’s state changes, the participant’s allocation status is revealed only if and when the patient enters the state that confers eligibility. This is referred to as **Randomization with Delayed Reveal**.

Another situation applies when eligibility is determined by information that relates to the condition of the patient at the time of initial assessment of eligibility and is relevant to determination of eligibility but is not known until later. In this circumstance, the participant’s allocation status can be revealed when the additional information becomes available. Examples of this type of information include the results of microbiological tests and the outcome of a request for consent. Information related to the safety of an intervention in individuals that may change between the time of initial assessment of eligibility and initiation of an intervention may also be reassessed and be used to determine if an allocation status will be revealed. Where initiation of the intervention is deferred pending availability of this additional information, this is referred to as **Randomization with Deferred Reveal**. It is noted that submission of information regarding microbiological results, consent, or safety information occurs without knowledge of allocation status.

Variation in relation to the timing of revealing and initiation of an intervention has implications to the treatment-by-treatment interactions that are potentially evaluable. Analysis of participants who are enrolled in one or more domains on the basis of Randomization with Immediate Reveal can be conducted within a state, for which
membership occurs for at least some participants at the time of enrollment. However, the analysis within this state will also include participants who are enrolled in the same domain on the basis of Randomization with Delayed Reveal with their eligibility for the act of revealing allocation status being defined by progression to the same state at some time-point after enrollment. Participants who are randomized within such a domain, at time of enrollment, but never enter a state that corresponds to eligibility for a domain never have their allocation status revealed and do not contribute to the analysis of treatment effect for interventions in that domain. In this regard, the ITT principle is not violated as the allocation status of such participants is never revealed. The models that are used to provide statistical analysis of the effect of an intervention within a domain that is contained wholly within one state are not able to evaluate interactions with interventions in domains that are defined in different states.

The final scenario to consider involves participants who are enrolled in one or more domains on the basis of Randomization with Deferred Reveal within a stratum. For such participants, their allocation status is revealed at, or close to, the time of deferred initiation of the intervention, when additional information necessary to establish eligibility has become available but relates to information that applies at baseline. Participants in this category are analyzed within baseline stratum in an ITT fashion. As such, the model allows evaluation of interactions with treatments in other domains that share the same stratum. Within such a domain, it can be assumed that there will be some participants who are never eligible to commence receiving the intervention (for example, due to death, or never reaching the defined criteria for the intervention to be commenced) and do not receive the intervention. However, all participants who have an allocation status revealed, even if the intervention is never administered, are analyzed according to and in compliance with the ITT principle.

7.8.3.7. Treatment-by-treatment interactions

Where specified in the statistical model, the treatment effect of an intervention is allowed to vary depending on treatment allocation in another domain (i.e. allow evaluation of treatment-by-treatment interaction). A BHM is used for all treatment-by-treatment interactions. In the BHM, a hyperprior is used for the differing treatment-by-treatment
interaction effects. The standard deviation of the hyperprior, lambda, is a modeling starting estimate for the variation in the magnitude of the difference in treatment effect dependent on an intervention assignment in another domain. By default, the starting estimate of the difference is zero (i.e. no interaction). The lambda parameter influences the extent to which the treatment effect of different interventions is permitted to vary dependent on intervention assignment in other domains. At the commencement of a model, the lambda parameter must be set, for each domain by domain pair.

In this REMAP, only three options are permitted with respect to specifying the lambda parameter for each domain-domain pair. Firstly, lambda may be set to zero. The effect of this is that there are no treatment-by-treatment interactions being evaluated between interventions in those two domains. Alternatively, lambda may be set to a defined number between zero and infinity. This parameter value cannot be varied for different domain-domain pairs; a global REMAP value has been selected. This specified value for lambda places a constraint on the variance of the difference in treatment-by-treatment interaction. Borrowing occurs to the extent that it is supported by the accumulated data, but the setting of lambda influences the initial amount of borrowing and the degree of borrowing as data accumulates. The value of lambda that has been chosen has been determined by simulations to achieve a compromise between type I and type II error in baseline scenarios that assume either no interactions or moderate interactions exist. Where a value for gamma is specified in the model, in this REMAP the value of gamma will be 0.075. The third choice is to allow no borrowing of the treatment-by-treatment interactions. This is equivalent to selecting a lambda of infinity. This choice would be the most aggressive choice in estimating treatment-by-treatment interactions.

The lambda that will be set for each domain-domain pair is specified in each DSA.

7.8.3.8. Nested analysis of interventions within a domain

Within domains in which there are three or more interventions, some interventions may be more likely to have a similar treatment effect. There are several examples of such similarity. For example, the interventions within a domain may comprise a no intervention option and two doses or strategy of administration of the same intervention, or two or more
interventions within a domain may belong to the same class of drug than one or more other interventions in that domain.

In situations in which interventions may be more similar than others, the model may nest the more similar interventions within a higher-level intervention category that comprises all the interventions deemed similar. In this situation, and to evaluate the occurrence of a Statistical Trigger, there are two models for analysis. Firstly, all patients receiving the nested interventions, treated as a single combined intervention, are compared with all other interventions in the domain. Secondly, all interventions are modeled individually. In this analysis, the interventions within a nest are modeled using a BHM incorporating the nesting structure. The BHM has a hyperprior specified for the shrinkage across interventions within the nest. This analysis will compare all interventions within a domain to all other interventions. This BHM analysis is used for the RAR assignments.

Whether nested analysis will be performed and, if so, the membership of category of more similar interventions will be specified in the DSA.

7.8.3.9. Current strata and states

The strata are defined, at the time of enrollment, by:

- **Shock**, defined in 2 categories, present or absent, with present defined as the patient is receiving continuous infusion of intravenous vasopressor or inotrope medications at the time of enrollment
- **Influenza** defined in two categories, present or absent, based on the results of microbiological tests for influenza. Any patient with suspected influenza who is not tested will be deemed positive. Any patient who is not suspected of having influenza and is not tested will be deemed negative. The availability and interpretation of microbiological tests are likely to change during the REMAP and an operational document will be used to specify how different tests are interpreted. Eligibility for a domain that tests antiviral medications active against influenza will be based on status with respect to influenza being proven or suspected at time of enrollment but it is noted that strata status is defined by the final results of influenza testing which may not be known at time of enrollment and may include analysis of samples collected after enrollment where it is reasonable to presume that the sample reflected influenza status at time of enrollment.
- Pandemic infection defined in two categories, proven or suspected pandemic infection or neither proven nor suspected pandemic infection. This is a ‘sleeping strata’ and will not be active before or after a pandemic but may be activated during a pandemic. The decision to activate a pandemic infection strata is specified in the Pandemic Appendix to the Core Protocol.

The default states are defined by the occurrence of:

- Hypoxemia, defined in 3 categories, comprising participants who are not receiving invasive mechanical ventilation; participants who are receiving invasive mechanical ventilation and have a ratio of arterial partial pressure of oxygen to fractional inspired concentration of oxygen (P:F ratio) of ≥ 200 mmHg or are receiving invasive mechanical ventilation with the Positive End-Expiratory Pressure (PEEP) set to less than 5 cm of water (irrespective of the P:F ratio); and participants who are receiving invasive mechanical ventilation with a PEEP of 5 cm of water or more and have a P:F ratio of <200 mmHg.

The domains to which each strata or state applies, the unit-of-analysis (which determines which if any treatment-by-strata interactions are evaluated in the model), the relationship between the timing of domain eligibility and the revealing of allocation status, whether nested analysis will occur, and what treatment-by-treatment interactions will be evaluated are specified in each DSA.

\[7.8.3.10.\quad \textit{Pre-specified subgroup analysis after achievement of a Platform Conclusion}\]

Following the achievement of a Platform Conclusion it is permissible for additional sub-group analyses to be conducted. The variables that specify such sub-groups are outlined \textit{a priori} in each DSA. These variables are different to those that define strata or states in the model and are not used in determination of a Statistical Trigger or RAR for that domain. In a domain in which the unit-of-analysis comprises two or more stratum, additional sub-group analyses can be conducted for variables that do specify stratum that have been combined to determine the unit-of-analysis.

All such analyses will only be conducted following the determination of a Platform Conclusion and, although reported, such analyses are always regarded as preliminary. Following a Platform Conclusion, the results of a pre-specified subgroup analysis may be
used to make changes to the model and, where appropriate and to an appropriate degree, data derived from the REMAP can be used to set the prior distribution at the commencement of the new model.

7.8.4. Bayesian Statistical modeling

Inferences in this trial are based on a Bayesian statistical model, that will calculate the probability of superiority, inferiority, and equivalence of the interventions (known as a posterior probability distribution) within a unit-of-analysis that is defined by one or more stratum, taking into account the evidence accumulated during the trial (based on data on the outcomes of participants) and on assumed prior knowledge (known as a prior distribution). For the evaluation of the main effects of interventions within a domain (and evaluation of regimens) the default design assumes that parameters in the model have uninformative prior distributions at the first adaptive analysis. This means that any subsequent Platform Conclusion is not capable of being influenced by any discretionary choice regarding the pre-trial choice of prior distribution (i.e. it is the most conservative approach, making no assumptions regarding the prior distribution). At each subsequent adaptive analysis, the prior distribution is determined by all accumulated data available at the time of the adaptive analysis. The Bayesian approach is seen as continually updating the distribution of the model parameters.

It is not precluded that, under certain circumstances, such as during a pandemic and where there was strong prior evidence along with an ethical imperative to evaluate a particular choice of therapy, that the design could allow an informative prior to be used for the analysis of results from the trial. It may also be permitted to use an informative prior when data that is incorporated in the informative prior is derived from patients already randomized within this REMAP. If informative priors are used this will be specified in the relevant DSA.

The study design can use informed priors to guide some elements of the design, such as for the evaluation of interaction terms, and will be described in the Statistical Analysis Appendix. As outlined above, gamma will be set to allow and influence the evaluation of
treatment-by-strata interactions and lambda will be set to allow and influence the evaluation of treatment-by-treatment interactions.

This method of statistical analysis differs from conventional (frequentist) trials. Frequentist statistics calculate the probability of seeing patterns in the data from a trial if a hypothesis is true (including patterns not observed). This approach relies on assumptions about frequency distributions of trial results that would arise if the same trial were repeated ad infinitum. Thus, it requires specific sample sizes, which in turn requires pre-experiment assumptions regarding plausible effect sizes and outcome rates. Although many clinicians are comfortable with this approach, the pre-trial assumptions are frequently incorrect, and the design lacks the flexibility either to easily address the complex questions more reflective of clinical practice or to make mid-trial corrections when the pre-trial assumptions are wrong without concern that the integrity of the final analysis is violated. To allow increased flexibility and yet still generate robust statistical inferences, REMAP relies on an overarching Bayesian, rather than frequentist, framework for statistical inference.

A Bayesian approach calculates the probability a hypothesis is true, given the observed data and, optionally, prior information and beliefs. The advantage of this approach is that, as more data are accrued, the probability can be continually updated (the updated probability is called the posterior probability). In this trial, frequent adaptive analyses will be performed, creating a very complicated sample space, and hence the Bayesian approach is a very natural one for these adaptive designs. The characterization of the risk of false positive error, or power, are done through Monte Carlo trial simulation. In contrast to frequentist confidence intervals which have awkward direct interpretation, Bayesian analyses return probability estimates that are directly interpretable as probabilities that statements are true (like the probability that one intervention is superior to another).

A number of variables are incorporated into the statistical model so as to provide ‘adjustment’. The variables for which such adjustment will be made will be the country in which a participant is treated, changes in outcome that occur over time (era), stratum and state at enrollment (shock and hypoxemia as measures of severity of illness), and age.
The main effect in the model is the treatment effect of each intervention. Each stratum, combination of stratum, or state (where eligibility is defined by a state) is analyzed separately but the model captures the commonalities across such sub-groups. Additionally, and where specified, the statistical model allows evidence relating to the effectiveness of an intervention in one stratum to contribute (via ‘borrowing’) to the estimation of the posterior probability in other strata, but this only occurs to the extent that treatment effect is similar in different strata.

When a Platform Conclusion is achieved, the results derived from the model, including any contribution from borrowing, will be reported. It is acknowledged that the estimate of treatment effect for a stratum may be contributed to by borrowing from adjacent strata but the results from the strata that have contributed to borrowing will not be reported. The results of these analyses are used to achieve the primary objective of the trial which is to determine the effectiveness of interventions and, where specified, the extent to which that effectiveness varies between strata (intervention-stratum interaction). Additionally, but only where specified a priori, the model is able to estimate the effectiveness of an intervention in one domain contingent on the presence of an intervention in another domain (treatment-by-treatment interaction). Although the model can identify an optimal regimen this is not the primary objective of the trial.

Greater detail of the methods within the Bayesian model to be applied in this REMAP are provided in the Statistical Analysis Appendix. The adaptive analyses will use data submitted from participating sites to their regional database. Each provider of regional data management will provide regular updates of data to the SAC for utilization in the adaptive analyses. The frequency of adaptive analyses will occur approximately monthly, unless the amount of data in a month is deemed insufficient. The timely provision of outcome data from participating sites is critically important to the conduct of frequent adaptive analyses.

7.8.5. Statistical Handling of Ineligible Participants

The goal of this REMAP is to enroll as wide a participant population as possible. Because of this and the desire to explore multifactorial regimens it will not be uncommon that a participant will be ineligible for single interventions or entire domains, or interventions may
be temporarily unavailable for use. In this section we present the details for how this REMAP deals with these possible circumstances.

If an intervention is unavailable at the time of randomization due to site restrictions (for example, exhausted supply or unavailable machinery) then the participant will be randomized to all remaining interventions and this participant will be included in the primary analysis set as though they were randomized unrestricted to their assigned intervention.

If a participant is ineligible for an entire domain then that participant will not be randomized to an intervention from that domain. The participant will be randomized to a regimen from all remaining domains. As long as the participant is randomized within at least one domain they will be included in the primary analysis. For the ineligible domain the participant will be assigned a covariate for that domain reflecting the ineligibility for the domain. This allows the model to learn about the relative efficacy of the remaining interventions in the domains in which the participant has been randomized. If there is a domain with only two interventions and participant is ineligible for one of the two then the participant will be treated as though they are ineligible for the domain. If there is a domain with more than two interventions but a participant is ineligible for all but one then the participant will be deemed ineligible for the domain. If a participant is only eligible for one intervention within a domain the allocation process may still provide a recommendation that the only available intervention should be provided to the participant (but this is so as to reinforce trial processes associated with successful embedding and such patients will not be included within any analysis of the relevant domain).

If there is a domain with more than two interventions and the participant is ineligible for at least one due to a patient-level factor (for example known intolerance to an intervention), but eligible for at least two, then the participant will be randomized among those interventions that the participant is eligible to receive. The participant will have their assignment included in the primary Bayesian model with an appropriate covariate identifying their ineligibility status that takes into account that a patient-level factor that determines partial eligibility could be associated independently with outcome. The impact of participants with partial eligibility will be taken into consideration by the DSMB at the
time of consideration of whether a Platform Decision is appropriate following a Statistical Trigger.

7.8.6. Intervention Superiority Statistical Trigger

At any adaptive analysis, if a single intervention has at least a 0.99 posterior probability of being a member of the optimal regimen, for that unit-of-analysis, then that intervention will be deemed as being superior to all other interventions in that domain in that target population. This Statistical Trigger may also be applied for a state that defines the target population for a domain.

7.8.7. Intervention Inferiority Statistical Trigger

At any adaptive analysis, if a single intervention has less than a 0.01 posterior probability of being a member of the optimal regimen, for a unit-of-analysis, then that intervention will be deemed as being inferior for that target population. If superiority and inferiority were to be discovered simultaneously (for example when there are two interventions), the result will be interpreted as demonstrating superiority. This Statistical Trigger may also be applied for a state that defines the target population for a domain.

7.8.8. Intervention Equivalence Statistical Trigger

If two interventions within a domain, for a unit-of-analysis, have at least a 0.90 probability of being within a pre-specified delta for the primary endpoint then these interventions will be deemed as being equivalent. The size of the pre-specified odds ratio delta is 0.20, meaning equivalence is reached with at least a 90% probability of neither intervention increasing the odds ratio of mortality by more than 0.20. An odds ratio delta of 0.2 has been chosen on the basis that it is consistent with guidance from the Food and Drug Administration (FDA) (U.S. Department of Health and Human Services, 2016) and the European Medicines Agency (EMA) (European Medicines Agency, 2005), as well as discussed in academic literature, and the magnitude of treatment effect that has been specified in published superiority trials that enroll patients who are critically ill (Aberegg et al., 2010, Ware and Antman, 1997, European Medicines Agency, 2005, U.S. Department of Health and Human Services, 2016). A measure of relative treatment effect (odds ratio) is specified,
rather than an absolute difference in treatment effect. This choice is made because it is reasonable to expect the mortality rates to vary between strata, and the relative effect is a more robust analysis method across these differences.

In a domain with two interventions equivalence is evaluated between the single pair of interventions. In a domain with more than two interventions, equivalence is evaluated for every possible pairwise comparison.

A DSA may define levels of delta for equivalence that are different from the default delta. This includes the possibilities of specifying a delta that may be asymmetrical for some or all pair-wise comparisons or both. The DSA will set out the rationale for any variation in delta and may include, but are not limited to, cost or burden.

This Statistical Trigger for equivalence may also be applied for a state that defines the target population for a domain.

7.8.9. Action when a Statistical Trigger is achieved

7.8.9.1. Introduction

If a Statistical Trigger is achieved this will be communicated by the SAC to the DSMB. Subject to the DSMB confirming that a Statistical Trigger has been reached validly, the DSMB will oversee a range of actions, as follows.

7.8.9.2. Actions following Statistical Trigger for superiority

If an intervention triggers a threshold for superiority and the DSMB declares this as a Platform Conclusion, the intervention is deemed as being superior. At that point randomization to all other remaining interventions in the domain in that unit-of-analysis will be halted at sites at which the superior intervention is available (randomization to the non-superior interventions may continue at sites at which the superior intervention is not available pending its availability). The result will be communicated to the ITSC who will take responsibility to undertake Public Disclosure as soon as practicable with the dissemination of the research result via presentation or publication or both.
Within the REMAP and at sites with access to the superior intervention, all participants will be allocated to the superior intervention (while still being randomized to interventions from the other domains). In this regard the domain remains active with what can be considered as 100% RAR to the superior intervention, pending the addition of any new interventions to be evaluated against the current superior intervention. It is also possible that a superior intervention will be retained but subject to further evaluation, by randomization, to refine the optimal characteristics of the superior intervention (for example duration of therapy or optimal dose).

7.8.9.3. **Actions following Statistical Trigger for inferiority**

If the trial triggers a threshold for inferiority and the DSMB declares this as a Platform Conclusion, the intervention is deemed as being inferior. At that point the intervention will not be randomized to any more participants in that unit-of-analysis. The result will be communicated to the ITSC who will take responsibility to undertake Public Disclosure as soon as practicable with the dissemination of the research result via presentation or publication or both.

Where a Platform Conclusion is reached for superiority or inferiority, the DSMB may recommend that Public Disclosure should be delayed until additional results are available, so as to allow further recruitment to evaluate interactions between interventions in different domains or for other clinically or statistically valid reasons. However, declaration of a Platform Conclusion will always result in the removal of inferior interventions from a domain and that all eligible participants within the REMAP receive a superior intervention.

7.8.9.4. **Actions following Statistical Trigger for equivalence**

If a Statistical Trigger arises because one or more pairs of interventions are deemed as being equivalent within a unit-of-analysis, this will be communicated to the ITSC by the DSMB. The ITSC in conjunction with the DSMB may undertake additional analyses, for example, of clinically relevant secondary endpoints.

The approach to a Statistical Trigger for equivalence is different depending on the number of interventions within a domain.
For domains with only two interventions a valid Statistical Trigger for equivalence will be reported as a Platform Conclusion. With respect to the adaptation of the domain, the following actions are possible:

- Removal of the domain from the Platform
- Switching the allocation status to deterministically assign one of the Interventions, for example the less burdensome or less expensive intervention
- No change to the interventions within the domain with continuation of RAR. This could be to further evaluate secondary endpoints, a smaller delta of equivalence, or interest in interactions with other Interventions. Such changes would require amendment to the DSA.

Factors that should be taken into account by the DSMB and the ITSC include the results of the primary analysis, analysis of clinically relevant secondary end-points, the possibility of treatment-by-treatment interactions, the relative burden and cost of the two interventions, the clinical interpretation of the adequacy of the delta, and the possibility that ongoing randomization with a smaller delta might also allow a Statistical Trigger for superiority (with a small effect size).

The options following a Statistical Trigger for a pair of Interventions in a Domain with three or more Interventions are more complex. Within a domain with three or more interventions the information provided by the DSMB to the ITSC may include specification of the ordinal rank of the equivalent interventions within the domain. With respect to reporting of Platform Conclusions and adaptations of the domain the following actions are possible:

- A pair of equivalent interventions may be compressed into a single group for the purposes of ongoing analysis. Both interventions continue to be interventions that are available within the domain for allocation, but the primary analysis considers the effect of the two interventions as a single group, where a balanced randomization will be assigned to each of the intervention pair within this compressed group. Secondary analyses can continue to be conducted to determine if equivalence is maintained with the possibility of the intervention being restored as individual interventions if results no longer support equivalence. It is acknowledged that re-analysis of the domain immediately following compression of one (or more) pairs of
equivalent interventions may result in the occurrence of other Statistical Triggers (e.g. a compressed pair may be superior or inferior to all remaining interventions). Any statistical Trigger that results from compression of one or more pairs will be responded to as outlined in this section with reporting of the cascade of Statistical Triggers. Compression of a pair of interventions can occur with or without reporting of a Platform Conclusion.

- Removal of one of the pair of equivalent interventions from the domain, for example the more burdensome or more expensive intervention, which will result in a reporting of a Platform Conclusion.
- No change to the interventions within the domain with continuation of RAR. This could be to further evaluate secondary endpoints, a smaller delta of equivalence, or interest in interactions with other interventions. Such changes would require amendment to the DSA. This could occur with or without reporting a Platform Conclusion.

Factors that should be taken into account by the DSMB and the ITSC include the results of the primary analysis, analysis of clinically relevant secondary end-points, the possibility of treatment-by-treatment interactions, the relative burden and cost of the two interventions, the clinical interpretation of the adequacy of the delta, the possibility that ongoing randomization with a smaller delta might also allow a Statistical Trigger for superiority (with a small effect size) and the ordinal position of the equivalent pair within the domain.

In a domain that comprises three or more interventions, but in which two or more interventions are analyzed in a nested manner, the nested group may be combined for analyses of equivalence. Where compression converts a domain with three or more interventions into a domain with two interventions (and data continues to support equivalence of the compressed interventions) such a domain will be regarded as a two-intervention domain for the purposes of evaluation of Statistical Triggers for superiority, inferiority, and equivalence.

If a Platform Conclusion is reached, the ITSC will take responsibility to undertake Public Disclosure as soon as practicable with the dissemination of the research result via presentation or publication or both. There is no automated adaptation when equivalence is deemed to have occurred. Where appropriate each DSWG will produce an operational
document, that is publicly accessible, that considers a range of plausible scenarios and provides guidance as to the actions that should occur in the event of a Statistical Trigger for equivalence for different pairs of interventions. If any of these documents are updated, previous versions will be archived but continue to be publicly accessible.

7.8.10. Analysis set for reporting

The primary analysis set that will be used for reporting a Public Disclosure will comprise all participants who are analyzed at the time the adaptive analysis results in the occurrence of a Statistical Trigger. As such, there will be some participants who have been randomized but are not included within this analysis, either because participants have not yet completed 90 days of follow up or because data for a participant who has completed 90 days of follow up has not yet been submitted. At the time of Public Disclosure, a secondary analysis will also be reported that comprises all participants who are evaluable through to the point at which there was cessation of randomization to the relevant comparator arms.

7.8.11. Simulations and statistical power

The design of the trial, at initiation, and in conjunction with the planning of the introduction of new interventions within a domain or of new domains, will be informed by the conduct of extensive simulations using standard Monte Carlo methods. Simulations will be updated whenever a new intervention is added within a domain or whenever a new domain is added to the REMAP. However, simulations will not be updated when an intervention is removed from a domain because of the declaration of a Platform Conclusion that the intervention is inferior. These simulations will evaluate the impact of a range of plausible scenarios on the statistical properties of the trial.

Existing simulations indicate that when a single intervention in a domain with two interventions is beneficial, with a constant benefit for all participants, the power to be determined superior to the complement intervention as a function of its odds-ratio benefit is greater than 90% when there is at least a 25% odds-ratio decrease in the probability of mortality for the funded sample size of 6800 participants. The timing of these conclusions of superiority have a median time of less than 2000 participants. The probability that an
intervention will be deemed superior to a complementary intervention when in truth the two are equal (a type I error) is typically less than 2.5%.

The results of detailed simulations of current domains is located in the Simulations Appendix which is maintained as an operational document that is publicly accessible and updated as required.

7.8.12. Updating model after monitoring

If any variable that contributes to the model is identified to be inaccurate at a monitoring visit, the data will be corrected and utilized for the next interim analysis. Any change to a previous statistical trigger will be reviewed by the DSMB to determine the implications. The DSMB will advise the ITSC if there is any material change in a Platform Conclusion which, if published, will be reported to the journal as an erratum.

7.9. Co-enrollment with other trials

Co-enrollment of participants in other research studies, including interventional trials, is strongly encouraged. The principle is that co-enrollment should always occur and is only not permitted when there is a clear threat to the validity of either study or it would materially influence the risk to participants. Decisions regarding co-enrollment with other trials will be made on a trial-by-trial basis. Where a potentially co-enrolling trial is being conducted in more than one region in which the REMAP is being conducted the decision regarding co-enrollment will lie with the ITSC. Where a potentially co-enrolling trial is being conducted only in one region in which the REMAP is being conducted the decision regarding co-enrollment will lie with the RMC. In all circumstances the ITSC and RMCs should liaise regarding decisions about co-enrollment. Decisions regarding co-enrollment with other trials will be distributed to participating sites as an operational document and will not require or involve amendment of this protocol.
7.10. **Cooperation between the REMAP and other trials with overlapping populations or interventions**

During the life-time of the REMAP it is likely that there will be many other clinical trials that will have inclusion and exclusion criteria which would include participants who are eligible for this REMAP. This would include, obviously, trials with a primary interest in patients with CAP, but could also include patients with the Acute Respiratory Distress Syndrome (ARDS) and patients with severe sepsis or septic shock. Such trials will likely test a range of interventions, some of which may also be intervention options within this REMAP. This REMAP seeks to cooperate and coordinate maximally with other trials. Examples of such cooperation and coordination would include, but not be limited to, utilization of REMAP infrastructure for screening and recruitment to other trials, sharing of data collected by the REMAP, and sharing of allocation status so as to allow incorporation of allocation status within analysis models.

Where another trial is evaluating an intervention that is also included within this REMAP each site (or region) would need to establish rules that determine circumstances in which each trial has preference for recruitment. Where another trial and this REMAP are evaluating different interventions the extent to which cooperation is possible will also be determined by the extent to which the interventions are compatible, i.e. capable of having their effect evaluated independently within each trial.

7.11. **Registry of non-randomized patients**

In some locations, the REMAP may be nested within a registry. Where this occurs the operation of the registry, including eligibility criteria, ethical issues, and variables that will be collected, will be described in a separate Registry Appendix.

7.12. **Criteria for termination of the trial**

This trial is designed as a platform, allowing for continued research in patients with CAP admitted to an ICU. The platform allows for the study to be perpetual, with multiple different domains that can be evaluated at any one time, and over time. Frequent adaptive analyses are performed to determine whether the interventions under evaluation are still
eligible for further testing or randomization should be stopped due to demonstrated inferiority, superiority or equivalence.

It is anticipated that after inclusion of the initially planned sample size, the study would continue to include additional participants and test additional domains and/or interventions until one of the following occurs:

- CAP is no longer deemed to be a public health problem
- The effectiveness and/or cost-effectiveness of all interventions are known and there are no new plausible interventions to test

Should the whole study be stopped, the end of trial is the date of the last scheduled follow up for any participant.

8. TRIAL CONDUCT

8.1. Site time-lines

8.1.1. Initiation of participation at a site

A range of options are available for the sequence of activities by which a site commences participation. The following outlines the default sequence of participation. The first level of participation is termed ‘observational only’. During this stage eligible participants will be identified, preferably using a process of embedding with recognition by clinical staff and registration on the study website as soon as eligibility is recognized. Treatment decisions will be made by that site’s clinical staff, and observational data using the study CRF or a subset of the CRF will be collected. The next level of participation is termed ‘single domain’. During this time period, eligible participants are identified and randomized, but only within a single domain. The next level of participation is termed ‘multiple domains’ although this would typically include only the addition of a single domain at any one time-point with staggered introduction of additional domains. Decisions about transition through levels would be made by the site, in conjunction with the RCC, and would be influenced by factors including speed and accuracy of identification of eligible participants, accuracy of information provided at time of randomization, compliance with allocated treatment status, and timeliness of reporting of outcome variables that are used to determine RAR.
algorithms. It is also permissible to commence the trial with multiple domains being active at initiation.

- Vanguard sites

In each region or at the initiation of a new domain or both, the trial may consider commencing with only a small number of vanguard sites. The purpose of commencing the trial at vanguard sites is to learn about the effectiveness of different options for trial processes so that this information about the most effective trial processes can be shared with subsequent non-vanguard sites. If a site is acting as a vanguard site this will be specified in any application for ethical approval at that site.

8.2. Summary of time-lines for recruited participants

A summary of the study and follow up schedule is outlined in Figure 6.
8.3. Recruitment of participants including embedding

8.3.1. Embedding

The trial is designed to substitute allocation of treatment status by randomization where otherwise a treatment decision would have been made by clinical staff (where it is clinically and ethically appropriate to do so), and for this to occur at the time that the treatment decision would have otherwise been made. It is not essential that embedding is used to achieve recruitment and randomization but it is preferable and it is encouraged that participating sites work in conjunction with the trial team to achieve embedding wherever possible and as soon as possible.

The success of embedding can be evaluated by the proportion of eligible participants who are recruited and randomized, that recruitment and randomization occurs as soon as possible after eligibility occurs, and that there is compliance with the allocated intervention. Successful embedding will enhance the internal and external validity of the results generated by the trial.

Each site, taking into account its own clinical work practices, will be asked to develop internal processes that will be used to achieve successful embedding. Wherever possible the RCC will advise and assist sites to achieve successful embedding. In brief, each participating site will identify their ICU admission procedures that occur with each new patient and then align these procedures to facilitate assessment of eligibility by clinical staff who provide routine care for each patient. This can be achieved through several methods including checklists on electronic Clinical Information Systems (eCIS).

8.3.2. Participant recruitment procedures at participating units

Once screened and identified as eligible the clinical staff (medical or nursing) or research staff will randomize the participant. Standard Operating Procedures (SOPs) will be developed to guide staff who undertake randomization. For example, in ICUs with an eCIS, an integrated website link may be used to allow direct access to the trial randomization webpage and, where possible, provide a summary (or direct population from the eCIS) of information that is required to be entered into the randomization web-site. To complement
this system the research staff in each ICU will review patients admitted each day to assess the suitability of patients deemed not eligible out of hours, either because they were missed on screening or because the clinical situation has changed.

8.4. Treatment allocation

An eligible participant will receive a treatment allocation that is determined for all domains for which the participant is eligible to receive at least one of the available interventions. The management of the randomization process in each region is specified in each RSA. Information related to RAR is presented in the Interventions section of the Trial Design (Section 7.5.2) and in the Statistical Analysis Appendix. As noted elsewhere, all randomized allocation will be determined at the time of initial enrollment, but allocation status will not be made known for domains that operate using Randomization with Delayed Reveal (see Section 7.8.3.4). If the participants clinical condition changes and enters the state that confers eligibility this information will be provided to the randomization web-site and the allocation status will be revealed to the site.

8.5. Delivery of interventions

8.5.1. Treatment allocation and protocol adherence at participating units

In conjunction with participating sites, trial management staff will develop generic and site-specific documents that outline processes for implementation of and facilitate adherence with participant’s allocated treatment status. Wherever possible these will seek to integrate trial processes with existing routine treatment processes to allow seamless adoption of the allocated treatments. For example, after randomization the clinical staff will be directed to use a pre-populated order sheet, necessary for the treating clinicians to authorize and for a bedside nursing staff to follow allocated treatment processes for that individual participant. It is intended that this process will not only reduce the complexity of ordering the study treatments but also reduce errors and increase adherence to the allocated protocol.

With respect to blinding, the default position within the REMAP is that treatments determined by randomization will be provided on an open-label basis. Where interventions are conducted on an open-label basis, all members of the ITSC and all other staff associated
with a RCC of the trial will remain blinded until a Platform Conclusion is reported by the DSMB. Although the default is the provision of open-label treatments the blinding of treatment status is not precluded within the REMAP. Whether interventions are open-label or blinded will be specified in DSAs.

8.6. Unblinding of allocation status

Unblinding of any blinded treatment by site research staff or the treating clinician should only occur only in when it is deemed that knowledge of the actual treatment is essential for further management of the participant. A system for emergency unblinding will be provided in the DSA of any domain that includes interventions that are administered in a blinded fashion. Any unblinding process will ensure that the investigator can directly and rapidly unblind in an emergency situation. All unblindings and reasons as they occur will be documented in the CRF. Unblinding should not necessarily be a reason for study drug discontinuation.

8.7. Criteria for discontinuation of a participant in the trial

Trial participants may be discontinued from the trial entirely or from one or more domain-specific interventions according to predefined criteria for discontinuation. The criteria for discontinuation specific to each domain are specified in the relevant DSA.

Criteria for discontinuation from the REMAP interventions entirely include:

1. The treating clinician considers continued participation in the REMAP interventions are not deemed to be in the best interests of the patient
2. The participant or their Legal Representative requests withdrawal from ongoing participation in all REMAP interventions

In the case of discontinuation, the reasons for withdrawal will be documented. Consent to the use of study data, including data collected until the time of discontinuation and data to inform primary and secondary outcome data will be requested specifically from participants or their Legal Representative who request discontinuation. Following discontinuation of a REMAP intervention, participants will be treated according to standard ICU management.
Participants who are withdrawn will not be replaced. All data will be analyzed using the ITT principle.

8.8. Concomitant care and co-interventions

All treatment decisions outside of those specified within the REMAP will be at the discretion of the treating clinician. Prespecified co-interventions related to specific domains will be recorded in the CRF and are outlined in the relevant DSAs.

8.9. Data collection

8.9.1. Principles of data collection

Streamlined data collection instruments and procedures will be used to minimize the workload in study sites. The CRF will be developed by the ITSC and made available to the participating sites as a paper and electronic CRF (eCRF) for ease of data collection. Data may be entered directly into the eCRF or first entered onto a paper copy of the CRF and entered subsequently into the eCRF. All data will be collected by trained staff who will have access to a comprehensive data dictionary. Information recorded in the CRF should accurately reflect the subject’s medical/hospital notes, must be completed as soon as it is made available, and must be collected from source data. The intent of this process is to improve the quality of the clinical study including being able to provide prompt feedback to the site staff on the progress, accuracy, and completeness of the data submitted. The eCRF will be web-based and accessible by a site or investigator specific password protected.

8.9.2. Variables to be collected

The generic variables to be collected for all domains in this REMAP are as detailed, indicatively, in the Core Protocol, below. Additional domain-specific variables are outlined in the relevant DSAs. Baseline variables are defined as at or before the time of randomization.

8.9.2.1. Baseline and required for randomization

- Overall REMAP Inclusion / exclusion check list
- Date and time of hospital admission
- Date and time of first ICU admission
- Domain-specific exclusion checklist
- Shock status
- Hypoxemia status
- Influenza status
- Pandemic status

8.9.2.2. Baseline but not required for randomization

- Demographic data (date of birth, age, sex, estimated body weight and height)
- Co-existing illnesses and risk factors for pneumonia
- Source of ICU admission
- Acute Physiology and Chronic Health Evaluation (APACHE) II variables
- Sequential Organ Failure Assessment (SOFA) variables
- Intervention allocation status within domains and randomization number
- Results of microbiological testing

8.9.2.3. Daily from randomization until discharge from ICU or Day-28 whichever comes first

- Hypotension and administration of vasopressors/inotropes
- Administration of dialysis
- Administration of invasive or non-invasive ventilation
- P:F ratio components

8.9.2.4. ICU Outcome data

- Date and time of ICU discharge
- Survival status at ICU discharge
- Dates of ICU readmission and discharge

8.9.2.5. Hospital outcome data

- Date and time of hospital discharge
- Survival status at hospital discharge
- Discharge destination
- Results of microbiological testing
8.9.2.6. **Antimicrobial Administration**

- Administration of antibiotic medications
- Administration of antiviral medications

8.9.2.7. **Outcome data**

At the discretion of the site, unless specified otherwise in a RSA or DSA, and collected by phone:

- Survival status at 90 days
- Survival status at 6 months
- HRQoL measured by EQ-5D at 6 months
- Disability status measured by WHODAS at 6 months and baseline information to interpret disability
- Opinions and beliefs regarding participation in research (reported at 6 months)

8.9.2.8. **Process-related outcomes**

- Time from index hospital admission to ICU admission
- Time from ICU admission to randomization
- Selected co-interventions
- Compliance with allocated intervention(s).

8.9.3. **Data required to inform Response Adaptive Randomization**

This REMAP will use frequent adaptive analyses and incorporate RAR. All variables used to inform RAR will be pre-specified. The key variables include:

1. **Baseline and allocation status**
 a. Unique trial-specific number
 b. Location (Country and Site code)
 c. Date and time of randomization
 d. Eligibility for each domain
 e. Intervention allocation for each domain
 f. Reveal status for each intervention allocation for each domain
 g. Age category
h. Strata
 i. Shock or no shock
 ii. Influenza status
 iii. Pandemic strata
i. State
 i. Hypoxemia

2. Outcome
 a. All-cause mortality at 90 days
 b. Date of hospital discharge

Data fields required to inform the adaptive randomization process and Statistical Trigger will be pre-specified and will be required to be entered into the eCRF within 7 days of death and within 97 days of enrollment into the REMAP if the participant is alive at 90 days.

8.9.4. Blinding of outcome assessment

Wherever feasible outcome assessment will be undertaken by research staff who are blinded to allocation status. Such blinding will not be feasible for many outcomes, particularly those that occur while the participant is still admitted to an ICU or the hospital. However, the primary endpoint and key secondary endpoints are not variables that are open to interpretation and so accuracy will not be affected by outcome assessors not being blinded to allocation status.

8.10. Data management

8.10.1. Source Data

Source documents are where data are first recorded, and from which participants’ eCRF data are obtained. These include, but are not limited to, hospital records (from which medical history and previous and concurrent medication may be summarized into the eCRF), clinical and office charts, laboratory and pharmacy records, radiographs, and correspondence.
8.10.2. Confidentiality

All documents will be stored safely in confidential conditions. On all trial-specific documents, other than the signed consent, the participant will be referred to by a unique trial-specific number and/or code in any database, not by name. Information linking the participant’s medical data to database materials will be maintained in a secure location at the participating site. This information will not be transmitted to the members of the ITSC, any DSWG, or RMC. The key to code and recode participant identifiers will only be accessible to local site investigators (research nurse and principal investigator) but not to members of the central study team. ICU and coded individual subject data and records will be held in strictest confidence by the site investigator and healthcare staff and by all central research staff, as permitted by law.

8.11. Quality assurance and monitoring

The trial will be conducted in accordance with the current approved protocol, Good Clinical Practice (GCP), relevant regulations and SOPs.

8.11.1. Plans for improving protocol adherence and complete data

Data entry and data management will be coordinated by the Regional Project Manager and the RCC, including programming and data management support.

Several procedures to ensure data quality and protocol standardization will help to minimize bias. These include:

- Start-up meeting for all research coordinators and investigators will be held prior to study commencement to ensure consistency in procedures;
- A detailed dictionary will define the data to be collected on the CRF;
- The data management center will perform timely validation of data, queries and corrections if errors are found during quality control checks;
- Data monitoring will occur as described below.
8.11.2. Data Monitoring

The study will be monitored by a representative of the RCC. A site initiation teleconference or visit will be conducted before site activation. Routine monitoring visits will be conducted the frequency of which will be determined by each site’s rate of recruitment. Email and telephone communication will supplement site visits.

A monitoring report will be prepared following each visit and reviewed by the RMC if appropriate. A follow up letter will be sent to the principal investigator and research coordinator at the site and will be filed in the site investigator file.

Medical records, any other relevant source documents and the site investigator files must be made available to the representative of the RCC for these monitoring visits during the course of the study and at the completion of the study as needed.

Domain-specific monitoring and protocol adherence issues are addressed in each DSA.

8.12. Data safety and monitoring board

A single DSMB will take responsibility for the trial in all regions in which it is conducted. The DSMB compiled for this study will consist of 5-7 members; the chair has been selected to have expertise in clinical trial methodology, and to have experience with adaptive clinical trial design. Additional medical, statistical, and other experts will be selected to ensure all necessary expertise to oversee a trial of this complexity and scope. The DSMB will conduct its activities in accordance with a separate Charter; the Charter must be approved by the DSMB, and ITSC prior to the initiation of the trial. The DSMB will be unblinded to ensure the highest quality oversight of the trial, in accordance with current recommendations of regulatory authorities.

The DSMB will review received frequent updates of the trial’s adaptive analyses from the SAC. The role of the DSMB will be to ensure that the pre-specified trial algorithm is being implemented as designed, that the design remains appropriate from a scientific and ethical point of view, to confirm when a Statistical Trigger has been reached, and to either reach or
recommend that a Platform Conclusion has been reached, as outlined in Section 7.8.9. Trial enrollment and conduct will be continuous.

The DSMB will not make design decisions. If the DSMB believes the trial’s algorithms are no longer acceptable from an ethical, safety, or scientific point of view it will make recommendations to the ITSC which has ultimate decision-making authority regarding the trial design. Where the DSMB and the SAC agree on a temporary deviation from the study protocol for safety reasons, they are not required to inform the ITSC of this decision. If the DSMB and SAC agree that a permanent change is necessary, the chairs of the DSMB, SAC and ITSC will meet to discuss the best way to proceed to ensure patient safety and the scientific integrity of the trial. Where the SAC and DSMB disagree on the need to deviate from the pre-specified trial design, the DSMB must inform the ITSC of their recommendations and the rationale for these.

8.13. Safety monitoring and reporting

8.13.1. Principles

The principles used in the conduct of safety monitoring and reporting in this trial are those outlined by Cook et al. in the manuscript “Serious adverse events in academic critical care research”. (Cook et al., 2008) A high proportion of critically ill patients who will be enrolled in this trial will experience mortality or substantial morbidity. The case-fatality proportion for critically ill patients with CAP is likely to be in the order of 20 to 30% and high proportions of patients will have one or both of laboratory abnormalities or complications of critical illness and its treatment. Patients who are critically ill, irrespective of whether or not they are enrolled in a trial, will typically experience multiple events that would meet the conventional definition of a Serious Adverse Event (SAE).

Trials involving vulnerable populations must have research oversight that protects patient safety and patient rights and also ensures that there can be public trust that the trial is conducted in a manner that safeguards the welfare of participants. The strategy outlined for the definition, attribution, and reporting of SAEs in this trial is designed to achieve these goals but does so in a way that seeks to avoid the reporting of events that are likely to be
part of the course of the illness or events that are recognized as important by their incorporation as trial endpoints.

8.13.2. Definition

In accordance with accepted standards a SAE is defined as an event that is fatal, life-threatening, results in (or may result) in disability that is long-lasting and significant, or results in a birth defect or congenital anomaly.

8.13.3. Reporting Procedures for Serious Adverse Events

The trial endpoints, as outlined in the Core Protocol and as specified in DSAs, are designed to measure the vast majority of events that might otherwise constitute an SAE. In particular, SAEs that might be attributable to specific interventions are included as secondary endpoints in each DSA but are recorded only for participants who are enrolled in that domain. If required, additional clarification of issues related to the identification of SAEs that are relevant to a specific domain will be described in the DSA. Generally, only SAEs that are not trial-end points require reporting. However, any SAE that is considered by the site-investigator to be attributable to a study intervention or study participation should be reported (Section 8.13.4). Where an SAE is not a trial end point it should be reported only where, in the opinion of the site-investigator, the event might reasonably have occurred as consequence of a study intervention or study participation (Section 8.13.4).

Events that meet the definition of an SAE, require reporting in accordance with the criteria outlined above, and occur between trial enrollment but before hospital discharge will be reported to a RCC. These SAEs should be reported to a RCC within 72 hours of trial staff becoming aware of the event, unless otherwise specified in a RSA. The minimum information that will be reported will comprise:

- Unique trial-specific number
- Date(s) of the event
- Nature of the event, including its outcome, and the rationale for attribution to a trial intervention
- Whether treatment was required for the event and, if so, what treatment was administered
8.13.4. Attribution of serious events to study interventions

It is likely that many participants within the trial will experience events that could be attributed to one or more study interventions. However, it will often be difficult to distinguish, in real-time, between events that occur as a consequence of critical illness and treatments that are not specified by the trial, and interventions specified by the trial. Site investigators should exercise caution in attributing events to study interventions. However, the standard that should be applied to determine whether SAEs are attributable to study interventions in this trial is that it is possible, probable, or certain that there is a direct link between a trial intervention and the SAE or the SAE is not considered to be a normal feature of the evolution of critical illness and its treatment.

8.13.5. Attribution of a death to study interventions or study participation

Critically ill patients who will be enrolled in this trial are at high risk of death. The primary endpoint of the trial is mortality and the objective of the trial is to identify differences in the primary endpoint that can be attributed to treatment allocation which will often include treatments that are believed to be or known to be safe and effective but for which it is not known whether some treatments are more effective than others. Where the trial evaluates interactions that are novel and not part of usual standard care the threshold for considering attribution to the novel experimental intervention should be lower than if an intervention is already in widespread use and its safety profile has already been established.

9. GOVERNANCE AND ETHICAL CONSIDERATIONS

9.1. Management of participating sites and trial coordination

Each region will have a RCC. Each RCC will take primary responsibility for the management of participating sites, data management for those sites, and provide web-based randomization for sites in its region. The processes by which each RCC will provide trial management and coordination is set out in each RSA.
9.2. Ethics and regulatory issues

9.2.1. Guiding principles

The study will be conducted according to the principles of the latest version of the Declaration of Helsinki (version Fortaleza 2013) and in accordance with all relevant local ethical, regulatory, and legal requirements as specified in each RSA.

9.2.2. Ethical issues relevant to this study

Patients who will be eligible for this study are critically ill, and many eligible patients will be receiving sedative medications for comfort, safety and to facilitate standard life saving ICU procedures. In patients who are not necessarily receiving sedative medications, the presence of critical illness, itself, leads commonly to an altered mental state that will affect the patient's mental capacity. The presence of these factors will mean that most patients who are eligible for the study will not be able to provide prospective consent for participation. Additionally, many interventions within this trial must be initiated urgently, either because there is an immediate time critical imperative to initiate the intervention or because the most valid evaluation of the intervention occurs if the trial intervention is initiated at the same time-point as would occur in clinical practice.

The broad approach regarding consent that will be used in this study are as follows:

- Patients who, in the opinion of the treating clinician, are competent to consent will be provided with information about the trial and invited to participate
- The vast majority of patients who are eligible for the REMAP will not be competent to consent. For such patients, and as permitted by local laws and requirements for ethical approval:
 - For domains in which all interventions available at the participating site are regarded as being part of the spectrum of acceptable standard care by the clinicians at that site, entry to the study is preferred to be via waiver-of-consent or some form of delayed consent. If required by local laws or ethical requirements and alternative to this pathway will be participation in conjunction with the agreement of an authorized representative of the participant.
For domains in which at least one intervention available at the participating site is regarded as experimental or not part of the spectrum of acceptable standard care then prospective agreement by an authorized representative will be required. An exception to this principle is recognized when there is a time-imperative to commence the intervention which would routinely preclude obtaining the prospective agreement by an authorized representative.

For domains in which eligibility may develop after initial enrollment in the trial it is permissible to obtain contingent consent from the participant or contingent agreement from an authorized representative, i.e. there is contingent approval to randomize the participant if the participant meets eligibility criteria for a domain subsequently.

Where any participant is enrolled without having provided their own consent, the participant’s authorized representative will be informed as soon as appropriate and informed of processes to cease trial participation. If required by local laws or processes for ethical approval, the authorized representative will be asked to provide agreement to on-going participation. In undertaking these trial processes research staff will be cognizant of the need to avoid unnecessary distress or create unnecessary confusion for authorized representatives and all other persons who have an interest in the participant’s welfare.

Where any participant is enrolled without having provided their own consent, the participant should be informed of their enrollment after regaining competency, in accordance with local practice and jurisdictional requirements. Where any participant is enrolled and does not regain competency (due to their death or neurological impairment) the default position, subject to local laws and ethical review processes, will be that the enrolled person will continue to be a participant in the trial.

It should be noted that once RAR is initiated, participants within the REMAP, on average, derive benefit from participation. As a consequence of RAR participants are more likely to be allocated to the interventions within each domain that are more likely to result in better outcomes.
9.2.3. Approvals

The protocol, consent form(s) and participant and/or authorized representative information sheet(s) will be submitted to an appropriate ethical review body at each participating institution and, as required, to any additional regulatory authorities. Written approval to commence the study is required for all relevant ethical and regulatory bodies.

9.3. Protocol modifications

9.3.1. Amendments

A “substantial amendment” is defined as an amendment to one or more of the Core Protocol, DSA, or RSA that is likely to affect to a significant degree:

- the safety or physical or mental integrity of the subjects of the trial;
- the scientific value of the trial;
- the conduct or management of the trial;
- the quality or safety of any intervention used in the trial;
- cessation of any intervention or domain for any reason;
- the addition of any new intervention within a domain; or
- the addition of new interventions within a new domain

All substantial amendments to the original approved documents, including all modifications of interventions available within a domain and the addition of interventions within a new domain will be submitted for approval to all relevant ethical and regulatory review bodies that were required for original approvals. Non-substantial amendments will not be notified to such review bodies, but will be recorded and filed by the trial sponsors.

Where the cessation of any intervention or any domain occurs for any reason, this is an operational issue and randomization to that intervention or domain will no longer be available. Cessation of an intervention or domain, either entirely, or within a prespecified subgroup, will be reported to all relevant regulatory bodies.
9.4. Confidentiality

The principles of confidentiality that will apply to this trial, are that all trial staff will ensure that the confidentiality of all participants information will be maintained and preserved at all times. The participants will be identified only by a unique trial-specific number on all documents and electronic databases that contain any information specific to the participating individual. Each site will maintain a separate file that links each participant’s unique trial-specific number to the participant’s name and other identifying information such as date of birth, address, and other contact information. No other information will be maintained in the file that links the participant unique trial-specific number to participant identifying information.

9.5. Declarations of interest

All trial staff will be required to declare and update all interests that might or might be seen to influence one or both of the conduct of the trial or the interpretation of results. All investigators involved in REMAP-CAP maintain a registry of interests on the REMAP-CAP website. These are updated periodically and publicly accessible on the study website.

9.6. Post-trial care

The trial has no responsibility for the ongoing management or care of participants following the cessation of all trial specified interventions.

9.7. Communication

9.7.1. Reporting

Each participating site will comply with all local reporting requirements, as specified by that site’s institution.

Should the entire trial be terminated, all relevant local ethical and regulatory bodies will be informed within 90 days after the end of the study. The end of the study is defined as the last participant’s last follow-up.
9.7.2. Communication of trial results

Trial results will be communicated by presentation and publication.

9.8. Publication policy

Manuscript(s) and abstract(s) resulting from the data collected during this study will be prepared by the corresponding DSWG. Where results are influenced by interaction between domains, the DSWG for both domains will take responsibility for preparation of manuscripts and abstracts. All manuscripts and abstracts reporting trial results that are prepared by one or more DSWGs must be submitted to and approved by the ITSC before submission.

Site investigators will not publish or present interim or definite results, including but not restricted to oral presentations. The role of site investigators and research coordinators at participating sites will be acknowledged by their names being listed as collaborators. Where required publications will comply with the publication policies of clinical trials groups that have endorsed or supported the study.

9.9. Data access and ownership

9.9.1. Data ownership

All data are owned by the responsible sponsor under the custodianship of the ITSC. As the trial is intended to be perpetual, all data will be retained indefinitely.

9.9.2. Access to Data

Direct access will be granted to authorized representatives from ITSC, sponsors, host institution and the regulatory authorities to permit trial-related monitoring, audits and inspections. The trial will comply with all relevant jurisdictional and academic requirements relating to access to data, as apply at the time that the data are generated. Ownership and access to data where a commercial organization is involved in the trial (for example by provision of goods or services that are tested within a domain) will be set out in a contract between trial sponsors and that commercial organization.
The trial will not enter into a contract with a commercial organization unless the contract specifies that:

- There is complete academic independence with regard to the design and conduct of all aspects of the trial including analysis and reporting of trial results
- May agree to provide a pre-publication version of presentations or manuscripts to a commercial organization but that the commercial organization has no authority to prevent or modify presentation or publication
- That all data are owned by the trial and the commercial organization has no authority to access data

9.10. *Consent form*

Template information and consent forms will be provided to participating sites as an operational document.
10. REFERENCES

forum for acute care trialists - Collaborative H1N1 Adjuvant Treatment pilot trial (CHAT): study protocol and design of a randomized controlled trial. *Trials*, 12, 70.

ANGUS, D. C., ANNANE, D., BEALE, R. J., BELLINGHAN, G. J., BERNARD, G. R., CHICHE, J. D.,
COOPERSMITH, C., DE BACKER, D. P., FRENCH, C. J., FUJISHIMA, S., GERLACH, H., HIDALGO, J.
L., HOLLENBERG, S. M., JONES, A. E., KARNAD, D. R., KLEINPELL, R. M., KOH, Y., LISBOA, T. C.,
S., MEHTA, S., MORENO, R. P., MYBURGH, J., NAVALESI, P., NISHIDA, O., OSBORN, T. M.,
PERNER, A., PLUNKETT, C. M., RANIERI, M., SCHORR, C. A., SECKEL, M. A., SEYMOUR, C. W.,
SHIEH, L., SHUKRI, K. A., SIMPSON, S. Q., SINGER, M., THOMPSON, B. T., TOWNSEND, S. R.,
VAN DER POLL, T., VINCENT, J. L., WIERSINGA, W. J., ZIMMERMAN, J. L. & DELLINGER, R. P.
2017. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and

RUGO, H. S., OLOPADE, O. I., DEMICHELE, A., YAU, C., VAN ’T VEER, L. J., BUXTON, M. B., HOGARTH,
M., HYLTON, N. M., PAOLONI, M., PERLMUTTER, J., SYMMANS, W. F., YEE, D., CHIEN, A. J.,
WALLACE, A. M., KAPLAN, H. G., BOUGHEY, J. C., HADDAD, T. C., ALBAIN, K. S., LIU, M. C.,
ISAACS, C., KHAN, Q. J., LANG, J. E., VISCUSI, R. K., PUSZTAI, L., MOULDER, S. L., CHUI, S. Y.,
KEMMER, K. A., ELIAS, A. D., EDMISTON, K. K., EUHUS, D. M., HALEY, B. B., NANDA, R.,
NORTHELF, D. W., TRIPATHY, D., WOOD, W. C., EWING, C., SCHWAB, R., LYANDRES, J.,
DAVIS, S. E., HIRST, G. L., SANIL, A., BERRY, D. A., ESSERMAN, L. J. & INVESTIGATORS, I. S.
Med*, 375, 23-34.

SHORR, A. F., BODI, M., RODRIGUEZ, A., SOLE-VIOLAN, J., GARNACHO-MONTERO, J. & RELLO, J.

SINGANAYAGAM, A., CHALMERS, J. D. & HILL, A. T. 2009. Severity assessment in community-

601.

THE ACUTE RESPIRATORY DISTRESS SYNDROME NETWORK 2000. Ventilation with lower tidal
volumes as compared with traditional tidal volumes for acute lung injury and the acute
respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.

effectiveness: guidance for industry. In: FOOD AND DRUG ADMINISTRATION (ed.).

WIERSINGA, W. J., BONTEN, M. J., BOERSMA, W. G., JONKERS, R. E., ALEVA, R. M., KULLBERG, B. J.,
SCHOUTEN, J. A., DEGENEER, J. E., JANKNEGT, R., VERHEIJ, T. J., SACHS, A. P. & PRINS, J. M.
2012. SWAB/NVALT (Dutch Working Party on Antibiotic Policy and Dutch Association of
Chest Physicians) guidelines on the management of community-acquired pneumonia in

WOODHEAD, M., BLASI, F., EWIG, S., GARAU, J., HUCHON, G., IEVEN, M., ORTQVIST, A., SCHABERG,

Switzerland: WHO Press.
Randomized, Embedded, Multifactorial Adaptive Platform trial for Community-acquired (REMAP-CAP)

Core protocol* for COVID-19 patients (REMAP-CAP:covid, or REMAP-COVID)

* The REMAP-COVID core protocol is a sub-core of the REMAP-CAP core protocol
TABLE OF CONTENTS

1. ABBREVIATIONS AND GLOSSARY ... 201
 1.1. Abbreviations ... 201
 1.2. Glossary ... 203

2. INTRODUCTION .. 207
 2.1. Relationship between interpandemic REMAP-CAP and REMAP-CAP for COVID-19 patients (REMAP-COVID) design and documents ... 207
 2.2. WHO endorsement .. 208
 2.3. Synopsis ... 209
 2.4. Protocol Structure .. 211
 2.4.1. Core Protocol .. 212
 2.4.2. Domain-Specific Appendices ... 213
 2.4.3. Region-Specific Appendices ... 213
 2.4.4. Statistical Analysis Appendix and Simulations Appendix 214
 2.4.5. Version History ... 214
 2.5. Lay Description ... 214
 2.6. Trial registration ... 215
 2.7. Funding of the trial ... 216

3. STUDY ADMINISTRATION STRUCTURE .. 216
 3.1. International Trial Steering Committee ... 217
 3.1.1. Responsibilities ... 218
 3.1.2. Members .. 218
 3.1.3. Contact Details .. 219
 3.1. Regional Management Committees ... 220
 3.1.1. Responsibilities ... 220
 3.2. Domain-Specific Working Groups ... 220
 3.2.1. Responsibilities ... 220
 3.3. International Interest Groups ... 221
 3.3.1. Role ... 221
 3.4. Sponsors .. 221
 3.4.1. Role of sponsor ... 221
 3.4.2. Insurance .. 222

4. INTERNATIONAL TRIAL STEERING COMMITTEE AUTHORIZATION 222
5. BACKGROUND & RATIONALE ... 224
 5.1. COVID-19 ... 224
 5.1.1. Introduction .. 224
 5.1.2. Epidemiology ... 224
 5.1.3. Standard care for patients with COVID-19 ... 225
 5.2. Randomized Embedded Multifactorial Adaptive Platform Trials 226
 5.2.1. Generating clinical evidence .. 226
 5.2.2. Underlying Principles of the Study Design ... 227
 5.2.3. Particular advantages of the REMAP design in a pandemic 228
 5.2.4. Nomenclature .. 228
 5.2.5. Randomization and Response Adaptive Randomization 229
 5.2.6. Embedding .. 231
 5.2.7. Multifactorial .. 232
 5.2.8. Adaptive ... 232
 5.2.1. Nesting of the REMAP within a Registry ... 238
 5.2.2. Platform ... 239

6. OBJECTIVES .. 240
 6.1. Primary objective .. 240
 6.2. Secondary objectives ... 240

7. SUMMARY OF TRIAL DESIGN ... 240
 7.1. Introduction .. 240
 7.2. Nomenclature ... 241
 7.3. Study setting and participating regions .. 242
 7.4. Eligibility criteria .. 243
 7.4.1. REMAP Inclusion Criteria .. 244
 7.4.2. REMAP Exclusion Criteria .. 244
 7.4.3. Study setting: definition of an ICU ... 244
 7.4.4. Domain-Specific Entry criteria .. 245
 7.5. Interventions ... 245
 7.5.1. Domain-Specific Information ... 245
 7.5.2. Treatment allocation and Response Adaptive Randomization 246
 7.5.3. Adaptation of Domains and Interventions 247
 7.6. Endpoints ... 248
7.6.1. Primary Endpoint ...248
7.6.2. Secondary Endpoints ...249
7.7. Bias Control..250
7.7.1. Randomization ...250
7.7.2. Allocation concealment ...251
7.7.3. Blinding of treatment allocation ..251
7.7.4. Blinding of outcome adjudication ...251
7.7.5. Follow up and missing data ...251
7.8. Principles of Statistical Analysis ...252
7.8.1. Preface ...252
7.8.2. Introduction ...252
7.8.3. Target populations (strata and states) and implications for evaluation of treatment-by-treatment and treatment-by-strata interactions ..254
7.8.4. Bayesian Statistical modeling ..264
7.8.5. Statistical Handling of Ineligible Participants ..267
7.8.6. Intervention Superiority Statistical Trigger ...268
7.8.7. Intervention Inferiority Statistical Trigger ...268
7.8.8. Intervention Equivalence Statistical Trigger ..269
7.8.9. Action when a Statistical Trigger is achieved ..270
7.8.10. Analysis set for reporting ...273
7.8.11. Simulations and statistical power ..274
7.8.12. Updating model after monitoring ...274
7.9. Co-enrollment with other trials ...275
7.10. Cooperation between the REMAP and other trials with overlapping populations or interventions ..275
7.10.1. Cooperation of the entire REMAP-CAP program with other trials..........................275
7.10.2. Cooperation of the REMAP-COVID component of REMAP-CAP with other trials...276
7.11. Registry of non-randomized patients ..276
7.12. Criteria for termination of the trial..277
8. TRIAL CONDUCT ..277
8.1. Site time-lines ..277
8.1.1. Initiation of participation at a site ..277
8.1.1. Vanguard sites ...278
8.2. Recruitment of participants including embedding..278
8.2.1. Embedding ...278
8.2.2. Participant recruitment procedures at participating sites279
8.3. Treatment allocation ...279
8.4. Delivery of interventions ...280
8.4.1. Treatment allocation and protocol adherence at participating units280
8.5. Unblinding of allocation status ..280
8.6. Criteria for discontinuation of a participant in the trial ..281
8.7. Concomitant care and co-interventions ..281
8.8. Data collection ...282
8.8.1. Principles of data collection ...282
8.8.2. Variables to be collected ..282
8.8.3. Data required to inform Response Adaptive Randomization ...284
8.8.4. Blinding of outcome assessment ...285
8.8.5. Data collection ..282
8.9. Data management ...285
8.9.1. Source Data ..285
8.9.2. Confidentiality ..285
8.10. Quality assurance and monitoring ...286
8.10.1. Plans for improving protocol adherence and complete data286
8.10.2. Data Monitoring ...286
8.11. Data safety and monitoring board ..287
8.12. Safety monitoring and reporting ...288
8.12.1. Principles ..288
8.12.2. Definition ...288
8.12.3. Reporting Procedures for Serious Adverse Events ..288
8.12.4. Attribution of serious events to study interventions ..289
8.12.5. Attribution of a death to study interventions or study participation289
9. GOVERNANCE AND ETHICAL CONSIDERATIONS ..290
9.1. Management of participating sites and trial coordination ...290
9.2. Ethics and regulatory issues ..290
9.2.1. Guiding principles ...290
9.2.2. Ethical issues relevant to this study ..290
9.2.3. Approvals ...292
9.3. Protocol modifications ...292
9.3.1. Amendments ... 292
9.4. Confidentiality ... 293
9.5. Declarations of interest .. 293
9.6. Post-trial care ... 293
9.7. Communication .. 294
 9.7.1. Reporting ... 294
 9.7.2. Communication of trial results 294
9.8. Publication policy ... 294
9.9. Data access and ownership .. 294
 9.9.1. Data ownership ... 294
 9.9.2. Access to Data ... 295
9.10. Consent form ... 295
10. REFERENCES ... 296

TABLE OF TABLES
Table 1: Features of a REMAP that contribute to advantages of the design 135

TABLE OF FIGURES
Figure 1: Protocol Structure .. 103

Figure 2: REMAP-COVID Organization Chart ... 109

Figure 3: Adaptive Analyses .. 130

Figure 4: REMAP Evolution Over Time ... 134

Figure 5: REMAP Structure .. 137
1. ABBREVIATIONS AND GLOSSARY

1.1. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APACHE</td>
<td>Acute Physiology and Chronic Health Evaluation</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute Respiratory Distress Syndrome</td>
</tr>
<tr>
<td>BHM</td>
<td>Bayesian Hierarchical Model</td>
</tr>
<tr>
<td>CAP</td>
<td>Community-Acquired Pneumonia</td>
</tr>
<tr>
<td>CRF</td>
<td>Case Report Form</td>
</tr>
<tr>
<td>DSA</td>
<td>Domain-Specific Appendix</td>
</tr>
<tr>
<td>DSMB</td>
<td>Data Safety and Monitoring Board</td>
</tr>
<tr>
<td>DSWG</td>
<td>Domain-Specific Working Group</td>
</tr>
<tr>
<td>eCIS</td>
<td>Electronic Clinical Information System</td>
</tr>
<tr>
<td>eCRF</td>
<td>Electronic Case Report Form</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration (United States)</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
</tr>
<tr>
<td>HRQoL</td>
<td>Health Related Quality of Life</td>
</tr>
<tr>
<td>ICMJE</td>
<td>International Committee of Medical Journal Editors</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>IIG</td>
<td>International Interest Group</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention-To-Treat</td>
</tr>
<tr>
<td>LOS</td>
<td>Length of Stay</td>
</tr>
<tr>
<td>OFFD</td>
<td>Organ Failure Free Days</td>
</tr>
<tr>
<td>P:F Ratio</td>
<td>Ratio of Partial Pressure of Oxygen in Arterial Blood and Fraction of Inspired Oxygen Concentration</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positive End-Expiratory Pressure</td>
</tr>
<tr>
<td>RAR</td>
<td>Response Adaptive Randomization</td>
</tr>
<tr>
<td>REMAP</td>
<td>Randomized, Embedded, Multifactorial, Adaptive Platform trial</td>
</tr>
<tr>
<td>REMAP-CAP</td>
<td>Randomized, Embedded, Multifactorial, Adaptive Platform trial for Community-Acquired Pneumonia</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>SAC</td>
<td>Statistical Analysis Committee</td>
</tr>
<tr>
<td>SAE</td>
<td>Serious Adverse Event</td>
</tr>
<tr>
<td>SARS</td>
<td>Severe Acute Respiratory Syndrome</td>
</tr>
<tr>
<td>SOPs</td>
<td>Standard Operating Procedures</td>
</tr>
</tbody>
</table>
TSC Trial Steering Committee
WG Working Group
1.2. Glossary

Borrowing is the process within the statistical model, whereby, when the treatment effect is similar in different strata, evidence relating to the effectiveness of an intervention in one stratum contributes to the estimation of the posterior probability in another stratum.

Core Protocol is a module of the protocol that contains all information that is generic to the Randomized, Embedded, Multifactorial, Adaptive Platform trial (REMAP), irrespective of the domains or interventions that are being tested.

Domain-Specific Appendix is an appendix to the Core Protocol. These appendices are modules of the protocol that contain all information about the interventions, which are nested within a domain that will be a subject of this REMAP. Each domain will have its own Domain-Specific Appendix (DSA). The information contained in each DSA includes criteria that determine eligibility of patients to that domain, the features of the interventions and how they are delivered, and any additional endpoints and data collection that are not covered in the Core Protocol.

Domain-Specific Working Group is a sub-committee involved in trial management, the members of which take responsibility for the development and management of a current or proposed new domain.

Domain consists of a specific set of competing alternative interventions within a common clinical mode, which, for the purposes of the platform, are mutually exclusive and exhaustive. Where there is only a single intervention option within a domain the comparator is all other usual care in the absence of the intervention. Where multiple interventions exist within a domain, comparators are the range of interventions either with or without a no intervention option, depending on whether an intervention, within the domain, is provided to all patients as part of standard care. Within the REMAP every patient will be assigned to receive one and only one of the available interventions within every domain for which they are eligible.
Intervention is a treatment option that is subject to variation in clinical practice (comparative effectiveness intervention) or has been proposed for introduction into clinical practice (experimental intervention) and also is being subjected to experimental manipulation within the design of a REMAP. For the purposes of the REMAP an intervention can include an option in which no treatment is provided.

Monte-Carlo Simulations are computational algorithms that employ repeated random sampling to obtain a probability distribution. They are used in the design of the study to anticipate trial performance under a variety of potential states of ‘truth’ (e.g., to test the way in which a particular trial design feature will help or hinder the ability to determine whether a ‘true’ treatment effect will be discovered by the trial). Monte Carlo methods are also used to provide updated posterior probability distributions for the ongoing analyses of the trial.

Platform Conclusion describes when a Statistical Trigger has been reached and, following evaluation by the Data Safety and Monitoring Board (DSMB) +/- the Trial Steering Committee (TSC), there is a decision to conclude that superiority, inferiority or equivalence has been demonstrated. Under all circumstances a Platform Conclusion leads to implementation of the result within the REMAP and under almost all circumstances a Platform Conclusion leads, immediately, to Public Disclosure of the result by presentation and publication. Where the Statistical Trigger is for superiority or inferiority, so long as the DSMB is satisfied that the Statistical Trigger has truly been met a Platform Conclusion will be automatic in almost all circumstances. Where the Statistical Trigger is for equivalence the DSMB, in conjunction with the TSC, may decide to not reach a Platform Conclusion at that time but, rather, to continue recruitment, for example, to allow a conclusion to be reached regarding clinically important secondary endpoints. There are situations in which the need to evaluate interactions may also result in a Statistical Trigger not leading, immediately, to a Platform Conclusion, although if superiority or inferiority has been demonstrated all patients in the REMAP will receive the superior intervention or no longer be exposed to inferior intervention(s), respectively.

Platform Trial is a type of clinical trial that studies multiple interventions simultaneously. Common features of a platform trial include frequent adaptive analyses using Bayesian
statistical analysis, Response Adaptive Randomization (RAR), evaluation of treatment effect in pre-specified strata, and evaluation of multiple research questions simultaneously that can be perpetual with substitution of answered research questions with new questions as the trial evolves.

Public Disclosure is the communication of a Platform Conclusion to the broad medical community by means of presentation, publication or both.

Regimen consists of the unique combination of interventions, within multiple domains, (including no treatment options) that a patient receives within a REMAP.

REMAP is a variant of a platform trial that targets questions that are relevant to routine care and relies heavily on embedding the trial in clinical practice. Like other platform trials, the focus is on a particular disease or condition, rather than a particular intervention, and it is capable of running perpetually, adding new questions sequentially.

Response Adaptive Randomization is a dynamic process in which the analysis of accrued trial data is used to determine the proportion of future patients who are randomized to each intervention within a domain.

State a state is a set of mutually exclusive and exhaustive categories, defined by characteristics of a patient within the REMAP, that are capable of changing over time for a single patient at different time-points during the patient’s participation in the REMAP (i.e. they can be dynamic). States are used to define eligibility for domains and this can include defining eligibility that occurs after the time of enrollment. State is used as an additive covariate within the Bayesian statistical model.

Statistical Analysis Committee takes responsibility for the conduct of the preplanned adaptations in the trial. This task generally consists of running predetermined statistical models at each adaptive analysis and providing this output to the DSMB. It is not a trial sub-committee. Rather, it will usually comprise individuals who are employed by the organization that undertakes statistical analysis, and from a trial governance perspective is under the supervision of the DSMB.
Statistical Model is a computational algorithm that is used to estimate the posterior probability of the superiority, inferiority or equivalence of the regimens and interventions that are being evaluated within the REMAP.

Statistical Trigger within the REMAP two or more interventions within a domain are evaluated and statistical models are used to determine if one or more interventions are superior, inferior or equivalent. A Statistical Trigger occurs when the statistical models used to analyze the REMAP indicate that the *threshold* for declaring superiority, inferiority, or equivalence for one or more interventions within a domain has been crossed. A Statistical Trigger applies to a stratum but may be reached in more than one stratum for the same intervention at the same adaptive analysis.

Strata comprise a set of mutually exclusive and exhaustive categories (stratum), defined by baseline characteristics of a patient within the REMAP, in which the relative effects of interventions may be differential. These possibly differential effects of interventions are reflected in the statistical model, the randomization probabilities, and the Platform Conclusions. The criteria that define a stratum must be present at or before the time of enrollment.

Trial Steering Committee is the committee that takes overall responsibility for the management and conduct of the REMAP with oversight over all domains.

Unit-of-analysis is the group of patients who are analyzed together within the model for a particular domain. The unit-of-analysis can be all patients who have received an allocation status in that domain or a sub-group of patients who received an allocation status determined by their status with respect to one or more strata. Within a domain, the RAR is applied to the unit-of-analysis.
2. INTRODUCTION

2.1. Relationship between interpandemic REMAP-CAP and REMAP-CAP for COVID-19 patients (REMAP-COVID) design and documents

REMAP CAP is a large on-going international adaptive platform trial specifically designed to run in both inter-pandemic and pandemic periods, focusing on optimal care of patients with severe pneumonia. It is governed by a core protocol and statistical analysis plan together with appendices to the core that describe:

- domains and interventions being tested (domain-specific appendices)
- regional features (region-specific appendices)
- additional appendices (e.g., the pandemic appendix, which describes the general features governing the transition between inter-pandemic and pandemic modes for the trial).

All study materials, including current versions of these protocols and appendices, can be found at www.remapcap.org.

This document is the core protocol for sites and regions that are participating in REMAP-CAP exclusively for the enrollment of patients with COVID-19 and require a stream-lined set of documents delineating only those issues pertinent to COVID-19. Sites and regions can still use the entire set of REMAP-CAP documents if they wish. If sites expand to non-COVID-19 patients, they must adopt the full REMAP CAP documents.

Thus, this REMAP-CAP COVID-19 core protocol is 'core' for COVID-19 patients, but is a subcore to the overall REMAP-CAP core protocol. It contains a modification of the REMAP-CAP core protocol and pandemic appendix to reflect only those study design features and procedures relevant to the study of patients with COVID-19. It has the following features.

- It is based on the overall REMAP-CAP protocol, except all elements that are not relevant to the study of COVID-19 patients are removed.
- It provides background information on COVID-19.
- It incorporates all design considerations contained in the main pandemic appendix that have been specifically incorporated for the COVID-19 pandemic. Thus, there is no additional 'pandemic appendix' attached to this document.
- It clarifies that, although REMAP-CAP has traditionally only enrolled patients requiring ICU care for cardiovascular or respiratory insufficiency (state = 'severe'), modifications to REMAP COVID-19 include the option to expand enrollment criteria for ALL hospitalized patients (defined as 'severe' or 'moderate', assuming 'mild' are managed as out-patients) with COVID-19, depending on the domain. In those instances, using the REMAP-CAP design principles, patients are stratified based on whether, at enrollment, they are in the state of meeting the traditional REMAP CAP ICU and cardiorespiratory entry criteria (severe) or not (moderate).
- Recognizing the very large number of trials being launched in the setting of COVID-19, it provides expanded discussion of co-enrollment and alignment with other trials.
- The REMAP-COVID core protocol is also accompanied by a Statistical Analysis Plan (SAP) Appendix. This SAP is a sub-SAP to the overarching REMAP-CAP SAP (just as the REMAP-COVID core protocol is a sub-core to the overarching REMAP-CAP core protocol). It delineates the pandemic model implemented for COVID-19 patients, including the handling of domain assignments to patients in the severe and moderate states.
- For those regions using the REMAP-COVID core protocol, there will also be region-specific appendices. Regions using the full REMAP-CAP protocol will provide any COVID-19 specific updates within their existing region-specific appendix.
- Domain-specific appendices will be attached to the REMAP-COVID protocol for all domains used in COVID-19 patients. Those domains (e.g., corticosteroid DSA) that exist in REMAP-CAP but require modification (e.g., changed primary endpoint in the COVID19 pandemic model) for evaluation in COVID-19 patients will be provided as sub-DSAs, akin to the 'sub' documents described above. Those domains generated specifically for COVID-19 will be appendices to this protocol (as well as to the master REMAP-CAP protocol).

 o **WHO endorsement**

REMAP-CAP has been designated by the WHO as a Pandemic Special Study. Under this designation, it has been tasked with helping answer crucial questions during a declared pandemic. This designation ensures that knowledge translation of clinical trial results can occur directly with policymakers and public health officials for rapid implementation around the globe. It ensures that results generated from REMAP-CAP during a declared pandemic can be translated in an efficient and transparent manner to benefit affected patients.

2.2. Synopsis

Background: Since SARS-CoV-2-coronavirus (COVID-19) emerged from Wuhan, China in late 2019, continual reports of disease now tally over 200,000 confirmed cases with almost 10,000 deaths worldwide. On March 11, 2020, the World Health Organization (WHO) announced COVID-19 as a pandemic [situation report 51](https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10) signaling the inevitable spread of this respiratory illness around the world.

With no effective treatments for COVID-19, the evaluation of potential treatments in randomized clinical trials is essential to mitigate the potential catastrophic loss of human life inherent to pandemics. Recognizing the importance of structured data capture for off-label uses of medications in a pandemic environment, the WHO urges use of unproven therapies only within the clinical trial context (https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf).

Current conventional clinical trials methods to assess the efficacy of treatments for any pneumonia, including acute viral pneumonia due to COVID-19, generally compare two treatment options (either two options for the same treatment modality, where both are in common use; or a new treatment against no treatment or placebo where the effectiveness of the new treatment is not known). Using this approach, in a series of separate and sequential trials, it will take an inordinate length of time to study all the treatment options. Additionally, with conventional trial designs it is not possible to evaluate interactions between treatment options. Though initiated prior to COVID-19, REMAP-CAP was specifically designed to address these issues. REMAP-CAP has already transitioned to pandemic mode, and is already enrolling patients with the goal of finding effective COVID-19 treatments.

Aim: The primary objective of this trial is to identify the effect of a range of interventions to improve outcome as defined by 21-day intensive care unit (ICU) free days for patients who present with suspected or proven COVID-19 infection.
Methods: The study will enroll adult patients who present with suspected or proven COVID-19 infection using a design known as a REMAP, which is a type of adaptive platform trial. Within this REMAP, eligible participants will be randomized to receive one intervention in each of one or more domains (a domain is a category of treatment that contains one or more options, termed interventions, with each intervention option being mutually exclusive). In addition to the primary outcome of 21-day ICU free days, there will also be both general and domain-specific secondary outcome measures.

In a conventional trial, enrollment continues until a pre-specified sample size is obtained, at which time enrollment ceases, and the trial data are analyzed to obtain a result. The possible results are that a difference is detected or that no difference is detected. However, when the conclusion of the statistical test is “no difference”, this could be that there truly is no meaningful difference, or that the result is indeterminate (i.e., it is possible that if more patients had been enrolled a clinically relevant difference may have been detected).

In comparison to a conventional trial, this REMAP uses an adaptive design, relying on pre-specified criteria for adaptation, that: avoids indeterminate results; concludes an answer to a question when sufficient data have accrued (not when a pre-specified sample is reached); evaluates the effect of treatment options in pre-defined subgroups of patients (termed strata); utilizes already accrued data to increase the likelihood that patients within the trial are randomized to treatments that are more likely to be beneficial; is multifactorial, evaluating multiple questions simultaneously; is intended to be perpetual (or at least open-ended), substituting new questions in series as initial questions are answered; and can evaluate the interaction between interventions in different domains. Bayesian statistical methods will be used to establish the superiority, inferiority, or equivalence of interventions within a domain. Interventions determined to be superior will be incorporated into standard care within the ongoing REMAP. Interventions determined to be inferior will be discontinued. While a limited number of initial treatments and treatment domains have been specified at initiation, it is planned that this REMAP will continue to evaluate other treatments in the future. Each new treatment that is proposed to be evaluated within the REMAP will be submitted for prospective ethical review.
2.3. Protocol Structure

The structure of this protocol is different to that used for a conventional trial because this trial is highly adaptive and the description of these adaptations is better understood and specified using a ‘modular’ protocol design. While all adaptations are pre-specified, the structure of the protocol is designed to allow the trial to evolve over time, for example by the introduction of new domains or interventions or both (see glossary for definitions of these terms). The structure of the protocol is outlined in Figure 1.
Figure 9: Protocol Structure. The REMAP-COVID is a subset of the REMAP-CAP structure, which studies both inter-pandemic and pandemic pneumonia. The DSAs are thus part of a family of DSAs that belong to REMAP-CAP, but some of these DSAs are not relevant in regions or sites only studying patients with COVID-19. Portions of REMAP-CAP relevant to regions, sites and patients in the REMAP-COVID only-program are shown in green. For illustration purposes, RSAs and other miscellaneous appendices are not shown.

The protocol has multiple modules, comprising a Core Protocol, multiple DSAs, and a Statistical Analysis Appendix. A Simulations Appendix is updated periodically as an operational document.

2.3.1. Core Protocol

The Core Protocol contains all information that is generic to the trial, irrespective of the domains or interventions that are being tested. The Core Protocol may be amended but it is anticipated that such amendments will be infrequent. The Core Protocol has the following structure:

- The background and rationale for studying COVID-19 infection
- The background and rationale for the research approach
- The trial design including study setting, the criteria that define eligibility for the REMAP, treatment allocation, strata (see glossary for a definition of this term), principles of application of trial interventions, trial endpoints, methods to control bias, principles of statistical analysis, and criteria for termination of the trial
- The trial conduct including recruitment methods, time-lines for sites, delivery of trial interventions, data collection, data management, and management of participant safety
- The overall trial governance structures and ethical considerations
2.3.2. Domain-Specific Appendices

DSAs contain all information about the interventions that will be the subject of the REMAP, which are nested within domains. As such, the Core Protocol does not include information about the intervention(s) that will be evaluated within the REMAP, but rather provides the framework on which multiple different interventions, within domains, can exist within this trial. Each new DSA or addition of one or more interventions to an existing DSA will be submitted for ethical approval prior to commencement. It is anticipated that the DSAs will change over time with removal and addition of interventions within an existing domain, as well as removal and addition of entire domains. Each DSA has the following structure:

- background on the interventions within that domain
- criteria that determine eligibility of patients to that domain
- the features of the interventions and how they are delivered
- any endpoints and data collection that are specific to the domain and additional to those specified in the Core Protocol
- any ethical issues specific to the domain
- the organization of management of the domain

Region-Specific Appendices

This REMAP is intended to be a global trial, conducted in multiple different geographical regions. The RSAs contain all information about the REMAP that is specific to the conduct of the trial in a particular region. This allows additional regions to be added or changes to each region to be made without needing to make major amendments to the Core Protocol in other regions. It is planned that, within each region, the documents submitted for ethical review will comprise the Core Protocol, DSAs, and the RSA for that region (but not other regions). Each RSA has the following structure:

- the definition of the region
- the organization of trial management and administration within the region
- information about availability of domains and interventions
- data management and randomization procedures
- ethical issues that are specific to a region.
If there is information that applies to one or more sub-areas of a region (e.g. a country within Europe or a state or territory within a country) and it is necessary to incorporate this information in the protocol, this information will be included within the RSA. Unless otherwise specified, the RSA will apply to all locations within that region.

2.3.3. Statistical Analysis Appendix and Simulations Appendix

The Statistical Analysis Appendix contains a detailed description of how the statistical analysis will be conducted for reporting treatment effects and reporting interaction between treatments, as well as the RAR. The Statistical Analysis Appendix will be amended when new interventions are added to a domain or when a new domain is added, but will not be updated when interventions are removed from a domain because of inferiority.

The Simulations Appendix is an operational document that contains the results of Monte Carlo simulations that are conducted to describe and understand the operating characteristics of the REMAP across a range of plausible assumptions regarding outcomes, treatment effects, and interactions between interventions in different domains. The statistical power of the study (likelihood of type II error) and the likelihood of type I error are evaluated using these simulations. As the trial adapts, with, for example, the introduction of new interventions, the trial simulations are updated and the Simulations Appendix is amended. The Simulations Appendix is not part of the formal protocol.

2.3.4. Version History

Version 1: Finalized for submission on 27 March 2020

2.4. Lay Description

COVID-19 is a viral respiratory infection caused by the SARS-CoV-2-coronavirus. Early in their course, reports indicate that those infected often experience fever and cough similar to a common cold. During this phase, these patients are highly contagious, capable of broadly spreading COVID-19 to others. Physical decline resulting in hospitalization is attributed to pneumonia, an infection involving the lungs, which is a common reason for admission to an ICU. Severe pneumonia is associated not only with failure of lungs supplying oxygen to the
body, but also failure of other organ systems that is due to an uncontrolled immune response to infection.

With patients suspected to have COVID-19 presenting to hospital, enrollment into this pandemic clinical trial will begin with preliminary domains to attempt to mitigate viral load and prevent disease progression. In the event a patient’s condition worsens and they should require admission to an ICU, additional domains are available which include medications that may modify the immune system and provide supportive treatments to support failing organs.

In a conventional clinical trial, selected patients are allocated to receive one treatment from a short list of alternatives, typically one or two. This trial differs from conventional clinical trials by being randomized, embedded, multifactorial, adaptive, and a platform (a “REMAP”). (Angus, 2015) In this type of trial, we will test many alternative treatments (“multifactorial”) by replacing ad hoc treatment decisions with “randomized” treatment allocation (“embedded”). Although treatments will be allocated randomly, patients will preferentially be allocated to treatments that statistical models derived from trial data indicate are more likely to be the most effective treatments. The trial will “adapt” in multiple ways including answering questions as soon as sufficient data have accrued to answer the question of the effectiveness of each treatment and by changing the treatments that are being tested over-time so as to progressively determine the best package of treatments for pre-defined categories of patients with severe pneumonia. Once a treatment is identified as being optimal it is subsequently routinely provided to all eligible patients within the REMAP.

2.5. Trial registration

This is a single trial conducted in multiple regions, but will, as a minimum, be registered with ClinicalTrials.gov. The trial registration number is: NCT02735707.

The Universal Trial Number is: U1111-1189-1653.
2.6. Funding of the trial

At initiation of REMAP-CAP, the trial had funding from the following sources.

The Platform for European Preparedness Against (Re-)emerging Epidemics (PREPARE) consortium is funded by the European Union (FP7-HEALTH-2013-INNOVATION-1, grant number 602525). Within the PREPARE consortium, the trial has funding for the recruitment of approximately 4000 patients.

In Australia, the trial has been funded by the National Health and Medical Research Council (NHMRC) (APP1101719) for the recruitment of 2000 patients.

In New Zealand, the trial has been funded by the Health Research Council (HRC) (16/631) for NZD for the recruitment of 800 patients.

In Canada, the trial has been funded by the Canadian Institute of Health Research, Strategy for Patient-Oriented Research (CIHR-SPOR) Innovative Clinical Trials Program Grant (no. 158584) for the recruitment of 300 patients.

Since the onset of the COVID-19 pandemic, additional funding has been secured from multiple sources, including several governments and healthcare systems, and including in additional regions, such as the United States. Additional funding is being sought in other regions and countries.

3. Study Administration Structure

The study administration structure is designed to provide appropriate management of all aspects of the study, taking into account multiple factors including availability of skills and expertise related to trial conduct and statistical analysis, and content knowledge regarding COVID-19 and pneumonia and the interventions that are being evaluated. The administration model is designed to provide effective operational and strategic management of the REMAP that operates in multiple sites as well as changes in the domains and interventions that are being evaluated.
Each participating region has a RMC that takes primary responsibility for trial execution in that region. An internationally based Domain-Specific Working Group (DSWG) exists for each domain (or for several domains that are closely related) and has responsibility for design and oversight of each domain. Internationally based Interest Groups exist to allow discussion and development of particular aspects of the REMAP related to statistical analysis, embedding, and health economic analysis of results from the trial.

The organizational chart for the entire REMAP-CAP program is outlined in Figure 2.

Figure 10: REMAP-CAP (including interpandemic and REMAP-COVID) Organization Chart

- **International Trial Steering Committee**

 The ITSC comprises the investigators who initially conceived and designed the trial (Foundation members) and representatives from each (funded and active) region. The intent of the ITSC is to have both theoretical and practical experience and knowledge regarding overall design, domain-specific expertise, and regional-specific expertise. As such, the ITSC will include clinical trialists, biostatisticians, regional lead investigators, domain lead investigators, and regional project managers, and must include one individual who is a Research Coordinator.
Responsibilities

The responsibilities of the ITSC are:

- development and amendment of the Core Protocol
- recruitment and approval of new regions to the REMAP
- liaison with the DSMB including, where appropriate, decisions regarding Platform Conclusions
- consideration of requests and approval of the addition of domains and their nested interventions to the REMAP including prioritization of new domains, new interventions within a domain or both
- liaison with the academic community including the International Committee of Medical Journal Editors (ICMJE) regarding issues such as data sharing and reporting of platform trials including REMAPs
- in conjunction with DSWGs, the analysis and reporting of results from domains
- approval of manuscripts reporting results that are submitted by DSWGs
- coordination of the REMAP during a pandemic
- obtaining funding for the REMAP
- determine the strategic direction of the REMAP

Members

Membership of the ITSC comprises at least 3 investigators from each funded location, the project manager or trial physician in each funded location, at least 1 investigator from Berry Consultants, at least one individual who is a research coordinator, and the chairs of active DSWGs. The operation of the ITSC will be specified by Terms of Reference that will be developed and modified, as required, by the ITSC. The members of the ITSC are:

Professor Derek Angus, Chair Corticosteroid DSWG and Foundation member

Ms. Wilma van Bentum-Puijk, European (EU) Project Manager

Dr. Scott Berry, President and Senior Statistical Scientist of Berry Consultants, and Foundation member

Ms. Zahra Bhimani, Canadian Project Manager

Professor Marc Bonten, European Executive Director, Chair European RMC, and PREPARE Work Package 5 co-lead (specific issues)
Professor Frank Brunkhorst, member EU RMC
Professor Allen Cheng, Chair Antibiotic Domain and Macrolide Duration DSWG
Professor Menno De Jong, member Antiviral DSWG
Dr. Lennie Derde, European Coordinating Investigator, PREPARE Work Package 5 co-lead (specific issues)
Professor Herman Goossens, Principal Investigator for PREPARE
Professor Anthony Gordon, member EU RMC
Mr. Cameron Green, Global Project Manager
Professor Roger Lewis, Foundation member (will step down when SAC is convened)
Dr. Ed Litton, member Australian and New Zealand (ANZ) RMC
Professor John Marshall, Canadian Executive Director
Dr. Colin McArthur, ANZ Deputy Executive Director and Chair Registry WG
Dr. Shay McGuinness, Chair ANZ RMC
Associate Professor Srinivas Murthy, Canadian Deputy Executive Director and Chair Antiviral DSWG
Professor Alistair Nichol, Chair Ventilation DSWG
Associate Professor Rachael Parke, member ANZ RMC
Ms. Jane Parker, Australian Project Manager
Professor Kathy Rowan, member EU RMC
Ms. Anne Turner, New Zealand Project Manager
Professor Steve Webb, ANZ Executive Director and Foundation member

Contact Details

The secretariat functions of the ITSC will rotate among the Regional Coordinating Centers (RCC).
Regional Management Committees

The operation of the REMAP in each region is undertaken by that region’s RMC, the composition of which is be determined by investigators in each region with membership listed in each RSA. Cross-representation between RMCs is strongly encouraged.

3.1.1. Responsibilities

The responsibilities of each RMC are:

- development and amendment of the RSA for that region
- identification and management of sites in that region
- obtaining funding for that region
- liaison with regional funding bodies
- consideration of the feasibility and suitability of interventions (and domains) for that region
- liaison with the sponsor(s) for that region
- management of systems for randomization and data management for that region

3.2. Domain-Specific Working Groups

Each active and future planned domain (or closely related set of domains) will be administered by a DSWG.

3.2.1. Responsibilities

The responsibilities of each DSWG are:

- development and amendment of the DSA
- proposal and development of new interventions within a domain
- in conjunction with the ITSC, analyzing and reporting results from the domain
- obtaining funding to support the domain, with a requirement that, if such funds are obtained, that an appropriate contribution to the conduct of the REMAP is also made.
3.2.2. Members

Membership of each DSWG is set out in the corresponding DSA but should comprise individuals that provide broad international representation, content knowledge of the domain, and expertise of trial conduct and design.

3.3. International Interest Groups

The following International Interest Groups (IIG) contribute to the trial:

- REMAP-CAP International Statistics Interest Group (ISIG)
- REMAP-CAP International Embedding Interest Group (IEIG)
- REMAP-CAP International Long-term Outcomes and Health Economics Interest Group (ILTOHEIG)
- REMAP-CAP International Pandemic Working Group (IPWG)

3.3.1. Role

The role of the interest groups is to provide advice to the ITSC and DSWGs about trial design and conduct as well as advance academic aspects of the conduct, analysis, and reporting of platform trials including REMAPs.

3.4. Sponsors

In relation to recruitment that occurs in:

- countries in Europe the sponsor is University Medical Center Utrecht.
- Australia the sponsor is Monash University.
- New Zealand the sponsor is the Medical Research Institute of New Zealand.
- Canada the sponsor is Unity Health Toronto.
- United States the sponsor is the Global Coalition for Adaptive Research.

3.4.1. Role of sponsor

The role of the sponsor in each region is specified in each RSA.
3.4.2. Insurance

The provision of insurance is specified in each RSA.

4. INTERNATIONAL TRIAL STEERING COMMITTEE AUTHORIZATION

This document is a summation of the master REMAP-CAP core protocol (version 3.0, 10th July, 2019) and the Pandemic Appendix (version 1.1, 12th February, 2020) to that core. The master REMAP-CAP core protocol, version 3.0 was read and authorized by the ITSC. Signed by the ITSC,

EU Executive Director
Marc Bonten

ANZ Executive Director
Steve Webb

ANZ Deputy Director
Colin McArthur

ITSC Member
Derek Angus

ITSC Member
Wilma van Bentum-Puijk

ITSC Member
Scott Berry

ITSC Member
Zahra Bhimani
5. BACKGROUND & RATIONALE

5.1. COVID-19

5.1.1. Introduction

This section, within the Core Protocol, provides background on the epidemiology, causes, treatment categories, and evidence base for the management of patients with COVID-19. Detailed information regarding the rationale for specific interventions to which patients will be randomized within the REMAP can be found in a corresponding DSA. As the trial is intended to be perpetual, if background information changes, appropriate amendments to the protocol documents will occur periodically, but it is anticipated that this will occur predominantly by amendment of DSAs.

5.1.2. Epidemiology

Estimates of the burden of critical illness among patients infected with COVID-19 vary, with estimates of case-fatality and proportion of patients who become critically ill being
unstable. Several factors contribute to this uncertainty including differential timing between
diagnosis and development of critical illness or death, the true incidence of infection being
uncertain because of possible under-reporting of asymptomatic or mild cases, the sensitivity
of diagnostic methods, possible limitation on the number of diagnostic tests that can be
performed, and changing case-definitions. Nevertheless, it is recognized that fatal
pneumonia is common. COVID-19 is now a pandemic with more than 200,000 cases
worldwide.

The clinical course of COVID-19 is variable, with many patients who progress to severe
pneumonia, with a significant proportion requiring mechanical ventilation and some reports
of multi-organ dysfunction. In a report of 3 patients who developed clinical and radiographic
features of pneumonia, one patient required mechanical ventilation and died subsequently
(Zhu et al., 2020) In a study of 41 hospitalized patients with laboratory-confirmed COVID-19
infection, 13 (32%) patients were admitted to an ICU and six (15%) died. Invasive
mechanical ventilation was required in four (10%) patients, with two patients (5%) receiving
extracorporeal membrane oxygenation as salvage therapy (Huang et al.). In another study of
99 hospitalized patients with COVID-19 pneumonia, 23 (23%) were admitted to ICU, 17
(17%) developed acute respiratory distress syndrome (ARDS), 3 (3%) acute renal failure and
4 (4%) septic shock. In a study of 138 patients with COVID-19 infection, 36/138 required ICU
care. Patients admitted to ICU were older and were more likely to have underlying
comorbidities. In the ICU, four patients (11.1% of those admitted to ICU) received high-flow
oxygen and 15 (44.4%) received noninvasive ventilation. Invasive mechanical ventilation was
required in 17 patients (47.2%), four of whom received extracorporeal membrane
oxygenation as rescue therapy. A total of 13 patients received vasopressors and 2 patients
received renal replacement therapy (Wang et al., 2020). Thus, COVID-19 infections have
demonstrated a variable clinical course, which requires further investigation in order to
draw meaningful conclusions.

5.1.3. Standard care for patients with COVID-19

While preventative efforts such as community awareness and social distancing serve to
minimize the spread of COVID-19, for those infected, there are no known effective
treatments. This REMAP will serve to evaluate several potential interventions to treat COVID-19 infection.

5.2. Randomized Embedded Multifactorial Adaptive Platform Trials

5.2.1. Generating clinical evidence

Angus has noted several problems encountered when generating robust clinical evidence, including barriers to conducting clinical trials, the generalizability of data from populations that are too broad or too narrow, the issue of equipoise especially when comparing different types of existing care, and the delay in translating results into clinical practice. (Angus, 2015) A REMAP provides a strategy to address many of these problems by gaining economies of scale from a common platform, which allows for broad enrollment but retaining the ability to examine for heterogeneity of treatment effects between defined subgroups. A REMAP focuses predominantly on the evaluation of treatment options for the disease of interest that are variations within the spectrum of standard care (although testing of novel or experimental therapies is not precluded) and does so by embedding the trial within routine healthcare delivery. In this regard the REMAP seeks to replace random variation in treatment with randomized variation in treatment allowing causal inference to be generated about the comparative effectiveness of different existing treatment options. The use of RAR, which allows the allocation ratios to change over time based on accruing outcomes data, maximizes the chance of good outcomes for trial participants. The embedding of such a platform within the day-to-day activities of ICUs facilitates the translation of outcomes to clinical practice as a “self-learning” system. As such, it also functions as an embedded and automated continuous quality-improvement program. A final advantage of a REMAP for pandemic infections is the ability to rapidly adapt to generate evidence, avoiding the inevitable delays associated with conventional trials in an outbreak of a new infectious diseases. (Burns et al., 2011)
5.2.2. Underlying Principles of the Study Design

A REMAP applies novel and innovative trial adaptive design and statistical methods to evaluate a range of treatment options as efficiently as possible. The broad objective of a REMAP is, over time, to determine and continuously update the optimal set of treatments for the disease of interest. The set of treatments that may be tested within a REMAP comprise the set of all treatments that are used currently or may be developed in the future and used or considered for use in the disease of interest. The design maximizes the efficiency with which available sample size is applied to evaluate treatment options as rapidly as possible. A REMAP has the capacity to identify differential treatment effects in defined sub-groups (termed strata), address multiple questions simultaneously, and can evaluate interactions among selected treatment options. Throughout the platform, patients who are enrolled in the trial are treated as effectively as possible. (Angus, 2015, Berry et al., 2015, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al., 2016, Rugo et al., 2016)

A conventional RCT (i.e. a non-platform trial) makes a wide range of assumptions at the time of design. These assumptions include the plausible size of the treatment effect, the incidence of the primary outcome, the planned sample size, the (typically, small number of) treatments to be tested, and that treatment effects are not influenced by concomitant treatment options. These assumptions are held constant until the trial completes recruitment and is analyzed. (Barker et al., 2009, Berry, 2012, Connor et al., 2013) Participants who are enrolled in a conventional RCT are not able to benefit from knowledge accrued by the trial because no results are made available until the trial completes. A REMAP uses five approaches to minimize the impact of assumptions on trial efficiency and also maximizes the benefit of participation for individuals who are enrolled in the trial. (Angus, 2015, Berry et al., 2015, Aikman et al., 2013, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al., 2016, Rugo et al., 2016)

These design features are:

- frequent adaptive analyses using Bayesian statistical methods
- RAR
- evaluation of differential treatment effects in pre-specified sub-groups (strata)
- evaluation of specified intervention-intervention interactions
- testing of multiple interventions in parallel and, subsequently, in series

This creates a ‘perpetual trial’ with no pre-defined sample size, the objective of which is to define and continuously update best treatment over the lifetime of the REMAP. The design aspects, including the risk of type I and type II error, are optimized prior to the commencement of the trial by the conduct of extensive pre-trial Monte Carlo simulations, modification of the trial design, and re-simulation in an iterative manner. The methods related to the application of the design features and the statistical analysis of this trial are outlined in the methods section of the protocol (Section 7). The following sections describe the background, rationale, and potential advantages of each of the design features of a REMAP (Section 5.3.4).

5.2.3. Particular advantages of the REMAP design in a pandemic

There are several particular advantages of this design when studying a new disease in a pandemic setting, such as COVID-19. First, multiple therapies can be evaluated simultaneously, without the requirement of requiring pre-set sample sizes, which are hazardous to estimate, given the limited understanding of the disease and potential effectiveness of any therapy. Second, therapies performing poorly can be quickly discarded, preserving most 'learning' for the evaluation of therapies that are most promising. Third, the design allows the testing of potential heterogeneity of treatment effect due to treatment-by-subgroup interactions and treatment-by-treatment interactions. Again, in a previously unencountered disease, such flexibility is crucial. Fourth, the use of multiple assignments with a common control, coupled with RAR, means that only a few patients are assigned control care, the control care can continually improve, and patients are preferentially assigned the best performing interventions. Thus, patients are being treated while therapies are being studied.

5.2.4. Nomenclature

A specific set of nomenclature is used to categorize potential treatments evaluated and populations within a REMAP as well as other aspects of the trial design and statistical analysis. A detailed glossary can be found in Section 1.2. Please see the glossary for the
The study will randomly allocate participants to one or more interventions, with each intervention nested within a domain. In this regard, a platform trial is no different to other forms of RCT in that randomization provides the basis for causal inference. However, unlike a conventional RCT, the proportion of participants who are randomized to each available intervention within a domain will not be fixed. Rather, the trial will incorporate RAR. RAR utilizes random allocation with a weighted probability for each intervention, with the weighted probability being proportional to the extent to which similar participants recruited earlier in the trial benefited or not from each particular intervention. (Angus, 2015, Berry, 2012, Connor et al., 2013, Aikman et al., 2013, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al., 2016, Rugo et al., 2016) RAR will result in participants in each particular stratum being randomized with greater probability to interventions that are performing better within that stratum. At the initiation of a new domain or when a new intervention is added to a domain the randomization proportion of all new interventions is balanced and only changes, with the application of RAR, that takes into account uncertainty about treatment effect so as to avoid excessive variability in proportions generated by RAR until sufficient sample size has accrued.

The major consequence of RAR is that better therapies move through the evaluation process faster, resulting in trial efficiency gains. (Berry, 2012, Connor et al., 2013) The platform “learns” more quickly about the treatments we ultimately care about, i.e. those that work best. Moreover, as data accrues, newly randomized participants are more likely to receive interventions from which they benefit. (Berry, 2012, Connor et al., 2013, Meurer et al., 2012, Angus, 2015, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al., 2016, Rugo et al., 2016) This is a highly ethical fusion of trial science with continuous quality improvement and a learning healthcare system. (Institute of Medicine, 2013) Assuming at least some interventions are better than others, the total mortality within the trial population will be lower than would have occurred with a fixed randomization proportion. It is also particularly relevant to the ethical conduct of trials that enroll critically ill patients.
where unanticipated increases in mortality have been seen (Dellinger et al., 2013) and to the conduct of trials during a pandemic in which there is in-built implementation of the therapies that are more likely to be beneficial during the trial. The simulations underpinning REMAP-COVID demonstrate that, in instances where particular interventions are indeed superior to others, the use of RAR will, on average, increase the odds of discovering the superiority not only with lower sample size, but with fewer participants exposed to the less efficacious therapies and, thus, fewer deaths or adverse outcomes.

There are potential disadvantages associated with RAR. It is intended that participating sites and trial investigators will be blind to the RAR proportions. One disadvantage is that, for interventions that are provided without blinding, the treating clinicians may be able to draw inference about the RAR proportions and, as a consequence, draw inference about the interim standing of interventions that are being tested in the REMAP. This could have adverse consequences including that clinicians are influenced to not enroll participants within a domain but rather directly prescribe the treatment that they believe to be doing better outside the trial. However, a number of factors mitigate this potential concern. First, it can be difficult to distinguish between patterns of sequential allocation status that are derived from fixed versus RAR. Second, extreme proportions will not be used (except where a Statistical Trigger but not a Platform Conclusion has been reached, see later). Finally, for many conditions, team-based management means that an individual clinician will directly observe only a small proportion of all participants enrolled within the trial at each participating site. Another disadvantage of RAR is that, under certain allocation rules, statistical power can be reduced. This concern is mitigated via pre-trial simulation to test the effects of different allocation rules. Furthermore, a REMAP that comprises multiple domains with multiple interventions within each domain will generally have higher, rather than lower, power as a consequence of the use of RAR. Finally, by deploying RAR rules to minimize the odds of exposure to inferior interventions, the design is intended to motivate embedding in clinical practice, thereby resulting in more rapid recruitment.

Within each domain, RAR will be implemented for participants who are eligible to receive two or more interventions within a domain. Where a participant is eligible for only one option within a domain, this will be the treatment allocation for such a participant. In these
circumstances, the provision of a treatment allocation status is made, predominantly, so as to provide a process that enhances the effectiveness of embedding, i.e. wherever possible the platform provides the treatment allocation.

5.2.6. Embedding

A trial is most efficient when all eligible participants are recognized and enrolled. Achieving universal enrollment of eligible participants increases the speed with which new knowledge is generated, maximizes internal and external validity, and minimizes operational complexity at the bedside (there is no need to distinguish between trial and non-trial patients, because all patients are trial patients). A number of strategies will be utilized to very tightly “nest” or embed trial processes in daily clinical care operations. The effectiveness of strategies to achieve embedding will be evaluated, updated, and shared with sites, taking into account different clinical processes at different sites. Wherever possible trial treatment allocations will be integrated with electronic customized order sets, produced at the point of delivery of care that also includes each site’s local care standards for concomitant therapies. This allows clinical staff to follow their typical workflow using protocolized order sheets to govern many aspects of patient care and serves to enhance compliance with the interventions allocated by the trial. The intention of embedding is that recruitment occurs 24/7 and is dependent on the usual medical staff who are responsible for patient care. Where possible electronic health records will be utilized to enhance screening and recruitment and specify the ‘order set’ for participants, including those orders that are determined by allocation status within the REMAP. While screening and recruitment for a REMAP can be conducted by research staff, it is not intended that recruitment should be dependent on research staff, particularly as such staff are typically only present during office hours and since limiting potential exposure of non-essential personnel given the highly contagious nature of COVID-19 is preferred. In addition to the facilitation of recruitment and high-fidelity delivery of the intervention, a further advantage is that the results of the trial can be translated rapidly within the ongoing REMAP so that all appropriate participants receive a treatment declared to be superior with continued allocation to that treatment option within the REMAP used to ensure implementation.
5.2.7. Multifactorial

If the trial randomizes in more than one domain of care it is multifactorial. The number of domains, at any time, is determined by a combination of the interventions that are appropriate and amenable for evaluation within the REMAP and the available statistical power, as determined by the conduct of simulations. It is intended that this REMAP will increase the number of domains, progressively, as the number of sites and rate of recruitment increases over time. The Bayesian models evaluate treatment effects (superiority, inferiority, equivalence) within each regimen but then, by isolating the effect of each intervention across all regimens in which that intervention is included, the independent effect of each intervention is estimated. The capacity to evaluate interventions within multiple domains, in parallel, increases trial efficiency substantially.

An additional advantage of the trial being multifactorial is the capacity to evaluate interactions between selected interventions in different domains. Where pre-specified, on the basis of clinical plausibility, statistical models will evaluate whether there is interaction between interventions in different domains. Where no interaction is suspected, interactions will not be evaluated as part of the \textit{a priori} statistical model.

Although participants within a REMAP will, typically, receive treatment allocations for multiple domains the decision-making regarding concomitant therapies will be made by the treating clinician in other domains of care. Treatment decisions in other domains of care will be recorded and may be analyzed, using observational methods, to evaluate candidate interventions for evaluation by randomization within the REMAP.

5.2.8. Adaptive

5.2.8.1. Frequent adaptive analyses

Adaptive analyses using Bayesian statistical methods will be undertaken using Markov Chain Monte Carlo (MCMC) estimates of the Bayesian posterior probability distributions. The trial will utilize a set of pre-specified rules to reach conclusions regarding the effectiveness of interventions that are being evaluated. It is these pre-specified rules that determines how the trial “adapts” to the information contained in accumulating participant data. An analogy
is that the ‘routes’ that a trial can take are pre-specified, within the protocol, but the exact route that the trial takes is determined by the data that accrues. Such adaptation improves statistical efficiency substantially. As this REMAP addresses the enrollment of patients during a pandemic, the frequency of adaptive analyses will occur with greater frequency to permit rapid data evaluation. Modeling to impute missing data will be used, as necessary.

5.2.8.2. Analysis of data to reach conclusions

The following structure and sequence of events will be used to reach conclusions from data as it accrues and is analyzed. This document, the Core Protocol, sets out the pre-specified rules for interpreting the results of analyses. These rules include pre-specified threshold levels of probability for achieving superiority, inferiority or equivalence of interventions within a domain. At each adaptive analysis the Statistical Analysis Committee (SAC) evaluates whether one or more probability thresholds that are derived from the trial’s statistical model have been exceeded. When the model indicates one or more of superiority, inferiority, or equivalence has occurred this is termed a Statistical Trigger. A Statistical Trigger may be reached for one or more strata at any given adaptive analysis.

The occurrence of a Statistical Trigger is communicated immediately to the trial DSMB by the SAC. The DSMB has primary responsibility for determining if a Statistical Trigger should lead to a Platform Conclusion. The declaration of a Platform Conclusion results in the removal of inferior intervention from randomization options or removal of all other interventions if an intervention is declared as superior. A Platform Conclusion will be communicated to the TSC who have responsibility for immediate dissemination of the result by presentation and publication of the result.

The algorithm by which a Platform Conclusion is reached is different for Statistical Triggers of superiority or inferiority, compared to those triggers that arise because of equivalence. Where the Statistical Trigger is for superiority or inferiority, so long as the DSMB is satisfied that the Statistical Trigger has been met validly, the default position is that the DSMB will declare this result as a Platform Conclusion. The only exception to this situation is if there is a need to evaluate potential interactions between treatments in different domains. In this circumstance the randomization schedule will be adapted (all participants receive the
superior intervention or randomization to one or more inferior interventions is removed) but Public Disclosure may be delayed until evaluation of the interaction is completed.

Where the Statistical Trigger is for equivalence the DSMB will evaluate clinically relevant secondary endpoints. The results, in relation to both primary and secondary endpoints, will be communicated to the TSC. The DSMB, in conjunction with the TSC, may declare a Platform Conclusion (for equivalence) or may opt to continue recruitment and randomization to the ‘equivalent’ interventions, for example, to allow a conclusion to be reached regarding clinically important secondary endpoints, to allow additional accrual to narrow the margin of equivalence (for example where health economic issues are relevant), or to allow evaluation of an interaction).

The pathway for and potential outcomes from each adaptive analysis is displayed in Figure 3.

Figure 11: Adaptive Analyses
5.2.8.3. Probability thresholds

In this REMAP the pre-specified rules are that, at any adaptive analysis, an intervention will be declared “superior,” if it has at least a 0.95 posterior probability of being the best intervention within its domain. An intervention will be declared “inferior” if it has a less than 0.05 probability of being the best intervention within its domain. Intervention equivalence is declared between two factors when there is at least a 0.90 posterior probability of the rate of the primary endpoint falls within a pre-specified delta.

5.2.8.4. Analysis within and between strata

The frequent adaptive analyses will evaluate the primary endpoint, within one or more stratum. Where specified, the statistical models for each strata will be able to ‘borrow’ information from adjacent strata leading to the declaration of a Statistical Trigger in one, more, or all strata. The extent to which borrowing occurs is dependent on the pre-specified structure of the model and the degree of statistical congruence of treatment effect between stratum. Where treatment effects are divergent between stratum there is less ‘borrowing’. The capacity to evaluate strata is particularly important for interventions that might plausibly have differential, including opposite, treatment effects in different strata. (Dellinger et al., 2013, Finfer et al., 2004, The Acute Respiratory Distress Syndrome Network, 2000) In traditional trial designs, divergent treatment effects among sub-groups may cancel each other out and this is one plausible explanation for the trials that report no overall difference in outcome. It should be noted that strata can be different for different domains and that strata can be changed over time (in conjunction with amendment of the protocol).

If a Platform Conclusion is reached just within a single stratum, this leads to cessation of randomization within that stratum, while continuing to randomize in other strata. It is acknowledged that a Platform Conclusion in one strata may rely on ‘borrowing’ from adjacent strata and that analysis just within a strata may yield a result that is different. Nevertheless, a Platform Conclusion is still regarded as valid if it relies upon borrowing from adjacent strata and will be reported and published including the extent to which it relies on borrowing.
5.2.8.5. Frequency of adaptive analyses

Adaptive analyses will occur frequently, with the frequency being approximately proportional to the rate of recruitment, and will be a largely automatic process; the frequency is chosen to balance logistical demands with the goal of learning rapidly from accumulating data. While this process will be overseen by an independent DSMB, the DSMB will not make design decisions unless the trial’s algorithms are no longer acceptable from an ethical, safety, or scientific point of view. The DSMB, in conjunction with the TSC, having reached a Platform Conclusion, and in deciding to terminate an intervention or domain (in conjunction with a Public Disclosure), may take into account one or more issues such as the value of continuing randomization so as to evaluate additional clinically relevant endpoints or to evaluate potential interactions, as well as take into account the opportunity cost associated with not moving to introduce new domains or interventions.

5.2.8.6. Advantages of adaptive analysis

The major advantage of this type of analysis approach is that a conclusion is reached when there is sufficient information to support the conclusion, rather than when enrollment reaches a predetermined sample size. This approach allows a result to be obtained as quickly as possible with appropriate sample size. It also avoids indeterminate results by continuing randomization until either superiority, inferiority, or equivalence is concluded. (Barker et al., 2009, Berry, 2012, Connor et al., 2013, Meurer et al., 2012, Carey and Winer, 2016, Harrington and Parmigiani, 2016, Park et al., 2016, Rugo et al., 2016) An additional advantage is that dissemination of such results does not interrupt the conduct of the platform. In a single REMAP, there is no need for the “start-and-stop” periods that would typically occur under the alternative approach of multiple separate trials. These “downtime” periods can be quite extensive and carry a number of disadvantages. First, there is a lot of duplicative effort every time a near-identical treatment protocol goes through the appropriate development and approval processes. Second, clinical investigation units must maintain a certain infrastructure, and that infrastructure can be expensive to maintain during periods when participants are not being enrolled or expensive to recreate if the infrastructure degrades. Third, downtime is simply one more contributor to delay in the production of scientific knowledge. Participants at large benefit from earlier production of
knowledge regardless of whether new information demonstrates a therapy is effective or ineffective. Finally, the inevitable start up delay before a trial can “go live” can wipe out any possibility of conducting effective research during time-critical situations such as a pandemic.

5.2.8.7. Substitution of new domains and interventions within the REMAP

It is intended that the REMAP will be ‘perpetual’. In conjunction with a Platform Conclusion being reached, the TSC takes responsibility for determining what new questions will be introduced to the REMAP including adding one or more new interventions to a domain or adding one or more new domains. In a REMAP, the sample size is not fixed, rather maximum use is made of the available sample and more questions may be asked for the same monetary investment. (Barker et al., 2009, Berry, 2012, Connor et al., 2013, Meurer et al., 2012, Aikman et al., 2013, Bhatt and Mehta, 2016, Park et al., 2016) The only limit on the duration of a platform trial is the availability of ongoing funding, the availability of new interventions to evaluate, and that the disease continues to be a public health problem. The TSC responsible for the REMAP will develop appropriate processes for identifying and prioritizing the selection of new interventions and domains that are introduced progressively into the REMAP over time.

How the domains and interventions within a REMAP might evolve over time is depicted in Figure 4.

Figure 12: REMAP Evolution Over Time
i. Nesting of the REMAP within a Registry

The REMAP can also be nested within a registry, with the registry recording information (typically a subset of the trial Case Report Form (CRF)) in all participants who met the REMAP entry criteria, or an expanded set of entry criteria, but who, for any reason, were not randomized. Examples could include registries of COVID-19 patients enrolled using the ISARIC/WHO clinical characterisation protocol (www.isaric.tghn.org). Information obtained from eligible but not randomized participants can be useful for evaluating the external validity of results and optimizing recruitment. Evaluation of non-randomized treatments received by all participants, both randomized and non-randomized, can be used to identify the consequences of natural variation in care so as to identify interventions that should be prioritized for evaluation by randomization within the REMAP. (Byrne and Kastrati, 2013)

The design features of the trial and the conceptual advantages associated with each design feature are summarized in Table 2.
If a registry component is included, the operation of the registry will be specified in a DSA that applies only to the registry aspects of the study.

5.2.9. Platform

Platform trials simultaneously evaluate multiple potential therapies, where the focus is on finding the best treatment for the disease, rather than precisely characterizing the effect of each intervention in isolation. (Angus, 2015, Berry et al., 2015, Bhatt and Mehta, 2016, Carey and Winer, 2016, Park et al., 2016, Rugo et al., 2016, Harrington and Parmigiani, 2016) Thus the goals of a platform trial are much more aligned with the goals of clinical care than a traditional, narrowly focused phase III RCT of a single agent. All of the component design features of a REMAP have been used previously and have accepted validity. What is innovative and novel, for a REMAP, is the combination of all of these design features within a single platform combined with their use for phase III evaluations and by using embedding to integrate the trial within routine clinical care.

Table 3: Features of a REMAP that contribute to advantages of the design

<table>
<thead>
<tr>
<th>Feature</th>
<th>Efficient use of information</th>
<th>Safety of trial participants</th>
<th>Avoiding trial down-time</th>
<th>Fusing research with care</th>
<th>Determining optimal disease management</th>
<th>Self-learning healthcare system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifactorial</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Response</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive Randomization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Frequent adaptive analyses</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Analysis of strata</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Substitution of new interventions</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
6. **OBJECTIVES**

 6.1. Primary objective

 The primary objective of this REMAP is, for adult patients with either suspected or proven COVID-19 infection, to identify the effect of a range of interventions to improve outcome as defined by 21-day ICU free days. Depending on the domain, these interventions will be assessed in all patients admitted to hospital or all patients admitted to an ICU with cardiovascular or respiratory compromise.

 6.2. Secondary objectives

 The secondary objective is to determine the effect of COVID-19 treatments on additional endpoints, including the World Health Organization 8-point ordinal scale measured at day 15 after enrollment, all-cause mortality measured at ICU discharge, hospital discharge, and at day 90, ICU and hospital length of stay (LOS), ventilator free days (VFDs) and other endpoints as indicated for specific domains.

7. **SUMMARY OF TRIAL DESIGN**

 7.1. Introduction

 This is a REMAP that aims to test many interventions in a number of domains with the primary outcome being the 21-day ICU free days. Frequent adaptive analyses will be performed to determine if an intervention is superior, inferior, or equivalent to one or more other interventions to which it is being compared, within a domain. A Bayesian analysis method will be used to evaluate superiority, inferiority, or equivalence, as well as to inform the adaptive randomization strategy within each domain. Where it is anticipated that interactions between interventions in different domains may be likely the statistical models will allow evaluation of such interactions. Where the statistical models evaluate such an interaction the models can incorporate the relative likelihood of such interactions, but with possibly low prior probability in cases where it is biologically implausible for interactions to occur. Each intervention within each domain will be evaluated within prospectively defined and mutually exclusive strata (sub-groups) of participants but information from one stratum
may be used (via 'borrowing') to contribute to the analysis of the effect of that intervention in other strata. Interventions that are found to be inferior, for a specific stratum, are removed from use in that stratum, and will, typically, be removed from the REMAP allowing new interventions or domains or both to be introduced. An RAR algorithm will be used to preferentially randomize participants to interventions that appear to be performing better. Extensive simulation studies have been performed to define the type I error, power to detect specified differences, and demonstration of equivalence as well as a broad range of operating characteristics. It is planned that further simulation studies will be conducted in conjunction with consideration of the introduction of new interventions or domains or both into the REMAP. The intention-to-treat (ITT) principle will be used for all primary analyses.

The key structure of the REMAP is outlined in Figure 5.

Figure 13: REMAP Structure

7.2. Nomenclature

A specific set of nomenclature is used to categorize potential treatments evaluated and populations within a platform trial as well as other aspects of the trial design and statistical
analysis. A detailed glossary can be found in Section 1.2. Please see the glossary for the definition and explanations for the following terms: domain, intervention, regimen, stratum, state, Statistical Trigger, Platform Conclusion, and Public Disclosure. The following section can only be understood in the context of an understanding of the definition and meaning of these specific terms.

7.3. Study setting and participating regions

The trial will recruit only participants who are hospitalized with suspected or proven COVID-19. Those who are suspected or confirmed to have COVID-19 infection will have access to specific pre-ICU domains. In the event a participant is admitted to an ICU and meets severity criteria, additional ICU domains would be available. An ICU is defined as a location that identifies itself as an ICU (or high dependency unit) and is able to provide at least non-invasive ventilation and continuous administration of vasoactive medications. The definition of an ICU may include a general ward in which a patient is under the care of an Intensive Care Specialist (Intensivist), but resource limitations prevent the immediate delivery of care occurring in the ICU. Broader definition of an ICU under a surge of pandemic COVID-19 cases is also permitted (see below). It is intended that the trial will be conducted in multiple regions. A region is defined as a country or collection of countries with study sites for which a RMC is responsible. The country or countries for which a RMC are responsible, as well as all aspects of trial conduct that are specific to each region, are described in the RSAs.

Participating hospitals and ICUs will be selected by a RMC based on response to an expression of interest and fulfilling pre-specified criteria including number of beds in the hospital or ICU, resources available to support research activities, and track record in conducting investigator-initiated multicenter trials.

The current regions are:

- **Europe**, with funding from a European Union FP7 grant (FP7-HEALTH-2013-INNOVATION-1, grant number 602525), to support the enrollment of 4000 participants. This funding terminates in 2021.
- **Australia and New Zealand**. In Australia the project has received funding from a NHMRC Project Grant (APP1101719), to support the enrollment of 2000 participants. This funding
terminates in December 2021, although some extension may be feasible. In New Zealand the project has received funding from a HRC Programme Grant (16/631), to support the enrollment of 800 participants. This funding terminates in November 2021.

- Canada. In Canada the project has received funding for a CIHR grant (158584), to support the enrollment of 300 participants. This funding terminates in 2022.
- United States. In the US, funding has been received from UPMC health system for recruitment internally at all UPMC hospitals (>40) and to support a US regional coordinating center. Philanthropic support is being provided through GCAR. Additional funds are being pursued.

It is intended that additional regions will be added if funding can be secured in other locations. It is desirable that the REMAP is active in as many locations as possible. There is no upper limit to the number of regions and the number of participating sites.

7.4. Eligibility criteria

The eligibility criteria for the REMAP are applied at two levels. One level is that there are inclusion and exclusion criteria that determine eligibility for randomization within the REMAP. The other level is that, once eligible for inclusion within the REMAP, additional criteria, typically exclusion criteria, are applied that are specific to the level of the domain. A patient is eligible for inclusion within a domain when:

- all REMAP inclusion criteria are present
- none of the REMAP exclusion criteria are present
- Domain-Specific criteria are met

As such, the key “inclusion criteria” for being eligible for a domain are that the patient is eligible for the REMAP. Criteria for inclusion in the registry, in which patients do not receive any randomized intervention, may be broader than the entry criteria for the REMAP (i.e. it is only a subset of registry eligible patients who are eligible for randomization within the REMAP).
7.4.1. REMAP Inclusion Criteria

In order to be eligible to participate in COVID-19 aspects of REMAP-CAP, a patient must meet the following criteria:

3. Adult patient (age ≥ 18 years of age) who is hospitalized with suspected or proven COVID-19 infection. “Suspected COVID-19 infection” means the patient is clinically diagnosed based on symptoms and/or exposure and for whom a microbiology test for COVID-19 has been/will be ordered, but for whom the result is pending. “Proven COVID-19 infection” means the patient has a confirmed positive result for COVID-19 based on microbiological testing.

In order to participate in all existing REMAP-CAP 'ICU-based' domains, a patient must also meet the following criteria (required to be characterized in the severe COVID-19 state):

4. Admitted to an ICU with the following features suggestive of COVID-19-related pneumonia within 48 hours of hospital admission
 a. symptoms or signs or both that are consistent with lower respiratory tract infection (for example, acute onset of dyspnea, cough, pleuritic chest pain) AND
 b. Radiological evidence of new onset infiltrate of infective origin (in patients with pre-existing radiological changes, evidence of new infiltrate)

5. Up to 48 hours after ICU admission, receiving organ support with one or more of:
 a. Non-invasive or invasive ventilatory support;
 b. Receiving infusion of vasopressor or inotropes or both

7.4.2. REMAP Exclusion Criteria

A potentially eligible patient who meets any of the following criteria will be excluded from participation in this trial:

8. Death is deemed to be imminent and inevitable during the next 24 hours

9. Previous participation in this REMAP within the last 90 days

7.4.3. Study setting: definition of an ICU

During the COVID-19 pandemic, there may be insufficient ICU beds available to care for all critically ill patients resulting in provision of advanced organ support occurring in locations
other than an ICU. Thus, an ICU is defined as area within the hospital that is able to deliver one or more of the qualifying organ failure supports specified in the Core Protocol (non-invasive ventilation, invasive ventilation, and vasopressor therapy) will meet the definition of an ICU. It is preferred in such circumstances that the patient is under the care of a specialist who is trained in the provision of critical care, but this is not an essential requirement.

7.4.4. Domain-Specific Entry criteria

Each domain may have additional, domain-specific eligibility criteria, typically just exclusion criteria, although a combination of inclusion and exclusion criteria can be specified. Patients who fulfill the Overall REMAP Eligibility Criteria will be assessed for enrollment into all domains that are active at a site. A participant enrolled in the trial will receive the number of REMAP-specific interventions equivalent to the number of Domains to which they are enrolled. The additional eligibility criteria that are specific to a domain are provided in each DSA.

Where a participant has an exclusion criterion to one or more interventions within a domain, but there are at least two interventions within that domain to which the participant is eligible the patient will be randomized to receive one of the interventions to which the participant is eligible.

7.5. Interventions

7.5.1. Domain-Specific Information

All information related to the background, rationale, and specification of interventions that will be administered within the trial are located in the DSAs. The minimum number of interventions within a domain is two and the maximum number is limited only by statistical power. Each RMC will select the interventions that will be available within a domain that will be offered to participating sites in that region but the default position is that all interventions that are available and feasible in that region or country should be offered to sites. Individual participating sites will select the interventions within a domain that will be available at their site with the default position being all available interventions. The
randomization program will only provide treatment allocations that are permitted at each participating site. This allows interventions that are not necessarily available in all regions, for example because of licensing reasons, to be included within the REMAP. Within the context of comparative effectiveness research, this also allows sites to determine the interventions that are within their usual or reasonable spectrum of care. However, the viability of a domain is dependent on at least one intervention being available in all regions and being available at a substantial majority of participating sites. This level of ‘connectedness’ is necessary for the validity of the statistical models that are used to analyze trial results.

7.5.2. Treatment allocation and Response Adaptive Randomization

Random allocation of treatment status forms the basis of all evaluations of causal inference. RAR will be used to vary the proportion of participants who are allocated randomly to each available intervention. Randomization is done at the regimen level, where a regimen is a selection of one intervention from each domain. The proportion of participants who receive a specified regimen will be determined by a weighted probability, with that probability being determined by the probability, taking into account all accrued data, of that regimen being the optimal regimen. RAR will result in participants being randomized with higher probability to interventions that are performing better.

The proportions that are specified by RAR are determined only by analysis of the primary outcome measure in participants who have completed 21 days of follow-up from the time of enrollment. By only including participants in the analysis models that determine the RAR proportions potential bias that arises from different events occurring with different patterns of timing within the 21 day follow up period is avoided. The same statistical model will be used to both analyze the results of the REMAP as well as specify the randomization proportions.

RAR weights reflect the probability each particular regimen is the most effective over all possible regimens within each stratum. The probability a regimen is optimal reflects not just the point estimate of difference in outcomes, but also the uncertainty around that estimate. At initiation of a new domain, the proportion of participants allocated to each intervention
is balanced (i.e. all interventions have equal proportions). The RAR proportions are then updated at the first adaptive analysis and at all subsequent adaptive analyses. When sample sizes are small, such as at the initiation of a domain, credible (probability) intervals are wide, and therefore randomization proportions remain close to being balanced among all regimens (i.e. randomization weights are weak and allocation remains close to balanced). When a new intervention is added to an existing domain it will commence with balanced randomization and the randomization weights will be updated with each adaptive analysis but will remain weak until sample size for the new intervention accrues.

As the data accrue and sample sizes increase, if the probability an intervention is part of the optimal regimen becomes large, but not large enough to claim superiority, the randomization proportions will be capped. This is done because interventions are provided on an open-label basis and extreme ratios would be at risk of allowing clinicians who recruit participants to draw inference about the effectiveness of individual interventions or regimens.

Some domains may have more than two interventions and it is possible that participant- or site-level characteristics may result in one or more interventions within a domain not being appropriate for an individual participant (for example, known intolerance to one of the interventions). Where a participant is unable to receive one or more interventions, but there are still two or more available interventions, random allocation will still be performed using RAR. However, interventions that are not available will be ‘blocked’ and the remaining RAR proportions will be divided by one minus the sum of the unavailable proportions and applied to the available interventions.

A detailed description of the statistical models and the application of RAR is outlined in the Statistical Analysis Appendix.

7.5.3. Adaptation of Domains and Interventions

Over the lifetime of this REMAP, it is anticipated that new interventions will be added to the starting domains and new domains initiated. The addition of interventions within existing domains, and the creation of new domains, will be considered according to a set of priorities and contingencies developed by the ITSC and are dependent on existing or new
clinical need and there being sufficient statistical power available within the REMAP. All new interventions and domains will be subject to ethics and regulatory approval prior to initiation.

A domain in which an intervention is identified as being superior and for which there are no new interventions that are appropriate to be introduced will continue as a domain within the REMAP but with all participants allocated to receive the superior intervention. Interventions that are identified as being inferior will be removed from a domain, with or without replacement, as appropriate. If all interventions are identified to have equivalence the ITSC will consider options that include cessation of the domain or continuation of the domain with a smaller delta.

The implementation of adaptations that occurs as a consequence of declaration of a Platform Conclusion may be limited by availability of an intervention in some locations. For example, if a superior intervention was not available (for licensing or site-specific reasons) all inferior options would be removed only at the sites where the superior option is available. Randomization to remaining interventions would likely continue at those sites until the superior intervention is available at those sites.

7.6. Endpoints

The primary outcome for this REMAP will apply to all domains. Secondary outcomes generic to all Domains are provided in this Core Protocol below. Secondary outcomes specific to individual domains are provided in the relevant DSAs.

7.6.1. Primary Endpoint

The primary endpoint for all domains will be a composite endpoint that comprises the number of whole and part study days for which the patient is alive and not admitted to any ICU until the end of study day 21. All patients who die before discharge from an acute hospital, irrespective of whether this occurs before or after day 21, will be coded as zero days. Patients who die between day 21 and discharge from an acute hospital will be updated at the time of the next adaptive analysis. All whole and part days after discharge from an acute hospital and before day 21 will be counted as being not admitted to an ICU.
Hospital readmission that included a new admission to ICU between first discharge from an acute hospital and day 21 will not contribute to the primary endpoint.

7.6.2. Secondary Endpoints

A set of generic secondary endpoints will be evaluated in all domains. Additional secondary endpoints may be specified for a domain within the DSA. Some domain-specific secondary endpoints may be specified as Key Domain-Specific Endpoints and will be interpreted in conjunction with the primary endpoint in determining the overall effectiveness of interventions.

The generic secondary endpoints for the trial are:

- **World Health Organization 8-point ordinal scale**
 - 1. Ambulatory with no limitation of activities
 - 2. Ambulatory with limitation of activities
 - 3. Hospitalized not receiving oxygen therapy
 - 4. Hospitalized receiving oxygen therapy by mask or nasal prongs
 - 5. Hospitalized receiving noninvasive ventilation or high-flow oxygen
 - 6. Hospitalized receiving invasive mechanical ventilation but no other additional organ support
 - 7. Hospitalized receiving invasive mechanical ventilation plus additional organ support (e.g., vasopressors, RRT, and/or ECMO)
 - 8. Deceased

- **ICU outcomes:**
 - ICU mortality censored at 90 days;
 - ICU LOS censored at 90 days;
 - VFDs censored at 28 days;
 - OFFDs censored at 28 days;
 - Proportion of intubated participants who receive a tracheostomy censored at 28 days;

Ventilator- and organ failure-free days will be calculated by counting the number of days that the participant is not ventilated or has no organ failure. If a participant dies during the hospitalization during which enrollment occurred, the number of VFDs or OFFDs will be set
to zero. If the participant is discharged alive from hospital, the remainder of days censored at 90 days are counted as ventilator- or organ failure-free days.

- Hospital outcomes:
 - Hospital LOS censored 90 days after enrollment;
 - Destination at time of hospital discharge (characterized as home, rehabilitation hospital, nursing home or long-term care facility, or another acute hospital);
 - Readmission to the index ICU during the index hospitalization in the 90 days following enrollment;

The index hospital admission is defined as continuing while the participant is admitted to any healthcare facility or level of residence that provides a higher level of care than that corresponding to where the participant was residing prior to the hospital admission. (Huang et al., 2016) This definition is used commonly in ICU trials. Participants who have been and still are admitted to a healthcare facility 90 days after enrollment are coded as being alive.

- Longer follow-up:

Day 90 all-cause mortality will be collected in all regions. Additional outcomes will be collected, where feasible, may be mandated in a DSA or a RSA, may be collected by central trial staff or site staff, and will comprise:

- Survival at 6 months after enrollment (where feasible, refer to relevant regional RSA)
- HRQoL at 6 months after enrollment using the EQ5D-5L (where feasible, refer to relevant regional RSA)
- Disability status measured at 6 months after enrollment using the WHODAS 2.0, 12-item instrument (where feasible, refer to relevant regional RSA)

7.7. Bias Control

7.7.1. Randomization

Randomization will be conducted through a password-protected, secure website using a central, computer-based randomization program. Randomization will be at the patient level and occur after data necessary to implement the inclusion and exclusion criteria have been entered into the secure randomization website. The RAR will occur centrally as part of the
computerized randomization process. Sites will receive the allocation status and will not be informed of the randomization proportions. Each region will maintain its own computer-based randomization program that is accessed by sites in that region but the RAR proportions will be determined by a SAC and provided monthly to the administrator of each region’s randomization program who will update the RAR proportions.

7.7.2. Allocation concealment

Allocation concealment will be maintained by using centralized randomization that is remote from study sites.

7.7.3. Blinding of treatment allocation

The default position within the REMAP is that treatments determined by randomization will be provided on an open-label basis. However, the blinding of treatment status is not precluded within the REMAP. If required, details related to blinding of interventions will be specified in the DSAs.

7.7.4. Blinding of outcome adjudication

The primary outcome of 21-day ICU free days is not subject to ascertainment bias. Wherever possible, trial management personnel, who are blinded to allocation status, will conduct any follow up after discharge.

7.7.5. Follow up and missing data

Regional trial management personnel will perform timely validation of data, queries and corrections. Any common patterns of errors found during quality control checks will be fed back to all sites. Data management center study personnel performing site checks will be blind to the study allocation. Missing data will be minimized through a clear and comprehensive data dictionary with online data entry including logical consistency rules. If values necessary for the Bayesian modelling of the primary endpoint and the RAR are missing they may be imputed, using available data. For example, if strata or state is missing, it will be multiply imputed based on the available variables and a prior distribution on the
relative prevalence of each strata or state. Values for the primary endpoint will not be imputed. Additional details are provided in the Statistical Analysis Appendix.

7.8. Principles of Statistical Analysis

7.8.1. Preface

The purpose of this section of the protocol is to introduce and summarize the statistical methods that will be used to analyze data within the REMAP. This section duplicates some of the information provided in the Statistical Analysis Appendix but this section is intended to be accessible to individuals with an understanding of common clinical trial designs and classical frequentist analytical methods but without necessarily having training in Bayesian statistics. Interpretation of this section also requires an understanding of the meaning of specific terms for which definitions are provided in the glossary (see Section 1.2).

A formal description of the adaptive Bayesian data analysis methods fundamental to the REMAP design, which assumes substantial familiarity with Bayesian calculation of posterior distributions conditioned on observed data, is located in the Statistical Analysis Appendix. There is some limited overlap between these two sections of the protocol so that each may serve an appropriate audience as a standalone description of the statistical methods.

7.8.2. Introduction

Within the REMAP, two or more interventions within a domain are evaluated and sequential Bayesian statistical analyses are used over time to incorporate new trial outcome information to determine if an intervention is superior, if one or more interventions are inferior in comparison to all other interventions, or if one or more pairs of interventions are equivalent, with respect to the primary endpoint. Every participant will be assigned a set of interventions, comprising one intervention from each domain for which the participant is eligible. The combination of interventions to which a participant is assigned comprises the regimen and the regimens are the available arms in the trial. Participants will be classified by membership in different populations defined by one or more strata. The unit-of-analysis for a domain is the most granular level, defined by one or more stratum, or a state, within which the treatment effect of interventions within that domain may vary in the statistical
model. Participants are also classified by the criteria that determine eligibility for each domain.

Inference in this REMAP is determined by analyses using pre-specified statistical models that incorporate time periods, age, and disease severity to adjust for heterogeneity of enrolled participants that might influence risk of death. These models incorporate variables that represent each intervention assigned to participants and possible interactions between interventions in different domains. The efficacy of each intervention within a domain may be modeled as not varying in any of the strata, or possibly varying in one or more of the different strata in the REMAP. Where the efficacy of each intervention within a domain is modeled as possibly varying, borrowing between strata is permitted. The unit-of-analysis that will be modeled may comprise the entire population (i.e. no categorization by strata is applied) or may be defined by one or more stratum. The unit-of-analysis and whether borrowing can occur between strata is pre-specified for each domain. At each analysis the current active statistical model (or models) is (are) used, and may include patients who were enrolled when previous versions of the model were being used. The current model is described in an operational document, maintained by the SAC. Unless otherwise specified (see Section 8.12) modifications and implementation of modifications to the model require the approval of the ITSC and do not require a protocol amendment.

Whenever a model hits a predefined threshold for any of superiority, inferiority, or equivalence for an intervention with respect to the primary endpoint, this is termed a Statistical Trigger. At any given adaptive analysis, a Statistical Trigger may be reached for all participants or for one or more stratum and will be reviewed immediately by the DSMB. When a Statistical Trigger is confirmed by the DSMB, based on a thorough review of the data including an evaluation of the proportion of patients for whom monitoring of variables that contribute to the model has been completed, and totality of evidence, and where no compelling reason exists not to reach a conclusion (see Section 7.8.9) regarding that question the result that has led to a Statistical Trigger will be specified to be a Platform Conclusion. The declaration of a Platform Conclusion will lead to appropriate modification of the interventions available within that domain and a Public Disclosure of the result. A
Statistical Trigger can be considered as a mathematical threshold, whereas a Platform Conclusion is a decision regarding one or more interventions within a domain.

7.8.3. Target populations (strata and states) and implications for evaluation of treatment-by-treatment and treatment-by-strata interactions

7.8.3.1. Introduction

In a clinical trial there are many different potential participant-level covariates. A covariate can be a demographic variable that remains unchanged throughout the trial (i.e. age or gender) or a variable representing the severity or course of the disease that can vary over time (i.e. it can be assessed at the time of enrollment and at other times after enrollment during the course of the illness). In this REMAP, there are two special roles for a subset of these potentially time-varying covariates.

First, covariates determined at the time of enrollment that are identified in the design as possibly having differential treatment effect (i.e. interventions may have differential efficacy for the different levels of the covariate) are referred to as strata. Strata are used to define the unit-of-analysis for a domain within a model. Strata are a recognized element in Platform Trials.

Second, within this REMAP, there is interest in studying domains that are relevant for a target population or defined disease state that, while it may be present at the time of enrollment for some participants, may only occur after enrollment for other participants and may never occur for another set of participants. This disease state could be identified by the same covariate that might also have been used to define a strata (but does not have to have been). In this regard, the concept of ‘state’ is used to define participants with characteristics that define a target population that will be evaluated by a domain, analyzed within the REMAP, and for which the characteristics can be present at the time of enrollment or may develop after the time of enrollment. State can also be used to define the unit-of-analysis for a domain within the model.

The appropriate statistical handling of the analysis of patients who become eligible for a domain as a consequence of entering a state, after the time of enrollment, requires the use
of models that take into account that the likelihood of entering the state after enrollment may have been influenced by the allocation status for other domains that specified the initiation of interventions that commenced at the time prior to entry into the state.

This evolution of Platform Trial design, to include ‘state’ is a new extension that has not been considered within Platform Trials conducted previously.

7.8.3.2. Stratum

A covariate in the REMAP that can be used as a unit-of-analysis within a Bayesian statistical model that allows for the possibility of differential treatment effects for different levels of the variable is referred to as a strata. The covariate is classified into mutually exclusive and exhaustive sets for analysis of treatment effect, as well as for defining separate RAR. The criteria that define a stratum are based on a characteristic that is present at or before the time of enrollment.

The simplest structure for strata is a single dichotomous stratum variable, which divides participants in the REMAP into two stratum. More complex arrangements are possible, such as a single strata variable that is ordinal or two (or more) dichotomous or ordinal strata variables the combination of which defines a single stratum (i.e. there are 2^N stratum when there are N dichotomous stratum variables).

The number of strata variables and the number of strata within the REMAP may be varied, depending on the impact of such decisions on statistical power, as determined by simulations. The modeling of strata may assume no differential effect for some domains. This may occur in two ways. Firstly, when the strata structure defines the entry criteria for a domain. Secondly, when two or more stratum are combined within a single unit-of-analysis (i.e. the unit-of-analysis comprises two or more stratum). If the unit-of-analysis comprises less than all available strata the analysis that is performed assumes that treatment effect does not vary between stratum combined within a common unit-of-analysis. The RAR is applied according to the model. So, the RAR applies to the patients that comprise the unit-of-analysis, irrespective of whether the unit-of-analysis comprises a single stratum or two or more stratum.
The *a priori* defined strata that are used for determination of results and for RAR may be changed during the life of the REMAP as knowledge is accumulated and, if this occurs, will result in amendment of one or both of the Core Protocol and DSAs. Data from patients enrolled before the change in the strata can be used to determine priors that are incorporated into the model at the outset of the incorporation of the new strata into the model.

7.8.3.3. Treatment-by-strata interactions: borrowing between strata

Where specified in the statistical model, the treatment effect of an intervention is allowed to vary between different strata. A Bayesian Hierarchical Model (BHM) is used for all treatment-by-strata interactions. In the BHM a hyperprior is used for the differing treatment effects across strata. The standard deviation of the hyperprior, gamma, is a modeling starting estimate for the variation in the magnitude of the difference in treatment effects between strata. By default, the starting estimate of the difference is zero. The gamma parameter influences the extent to which the treatment effect of different interventions is permitted to vary between strata. At the commencement of a model, the gamma parameter must be set, for each domain-strata pair.

In this REMAP, only three options are permitted with respect to specifying the gamma parameter for each domain-strata pair. Firstly, gamma may be set to zero. The effect of this is that treatment effect of an intervention is not permitted to differ between specified strata. The unit-of-analysis is not sub-divided according to the stratum variable. If gamma is set to zero for all strata for a domain, the unit of analysis is all patients randomized in that domain. Secondly, and at the opposite extreme, gamma can be set to infinity. In this situation treatment effect is evaluated separately and independently in each stratum (with no borrowing between stratum). Thirdly, gamma may be set to a defined number between zero and infinity. This parameter value cannot be varied for different domain-strata pairs, a global REMAP value has been selected. This specified value for gamma places a constraint on the variance of the difference in treatment effect in different stratum but permits the model to estimate treatment effect in one stratum by borrowing from other stratum. Borrowing occurs to the extent that it is supported by the accumulated data, but the setting of gamma influences the amount of borrowing and how quickly borrowing is able to occur.
The value of gamma that has been chosen has been determined by simulations to achieve a compromise between type I and type II error in baseline scenarios that assume either equivalence or superiority. Where a value for gamma is specified in the model, in this REMAP the value of gamma will be 0.15.

The specification of gamma determines the unit of analysis in the model and the extent of borrowing. For each domain-strata pair, the unit of analysis can be all patients (gamma = zero), each stratum with borrowing (gamma = 0.15), or each stratum separately (gamma = infinity).

The gamma that will be set, and hence the unit-of-analysis, for each domain-strata pair is specified in each DSA.

7.8.3.4. Analysis set for strata, timing of enrollment and timing of information regarding strata membership

It has already been specified that the criteria that define a stratum must be present at or before the time of enrollment. In some situations, the information necessary to determine membership of a stratum may become available after the time of enrollment or may be acquired from information derived after enrollment where the understanding of biology of a disease makes it reasonable to assume that the criteria was met at the time of enrollment. This situation might apply to status with respect to a particular pathogen where results of microbiological testing are not available until after enrollment or when the sample that is tested is not collected until after enrollment.

In this situation randomization is permitted within patients where the criteria is suspected or proven at the time of randomization. With regards to possible infection with a specified pathogen, suspected or proven infection at the time of randomization is sufficient to allow an allocation status to be made. For a patient with suspected infection, membership within the strata is defined by the final test results, but a patient who is suspected but is never tested is analyzed as a positive. If a Platform Conclusion is reached for one or more stratum, analyses will also be done on patients with suspected infection who receive the intervention but who turn out to be negative. Whether borrowing between strata is permitted will be specified in the DSA.
7.8.3.5. State

A state is a clinical condition of a participant that may change during the course of their treatment. The different states within the REMAP are used to define possible eligibility of the participant for different domains at different times in the trial. A state is a set of mutually exclusive categories, defined by characteristics of a participant, that are dynamic in that they can change for a single participant, at different time-points, during the participant’s participation in the REMAP.

The number of state variables and the number of states within the REMAP may be varied, depending on the impact of such decisions on statistical power, as determined by simulations. The same state may be shared by one or more domains but may be different in different domains. The a priori defined states that are used for determination of results and for RAR may be changed during the life of the REMAP as knowledge is accumulated or as domains change and, if this occurs, will result in amendment of one or both of the Core Protocol or DSAs. Data from patients enrolled before the change in the state can be used to determine priors that are incorporated into the model at the outset of the incorporation of the new state into the model.

7.8.3.6. Timing of randomization and revealing of allocation status

Several different scenarios are recognized that represent different combinations of randomization within a stratum or a state and by the options for the time (at enrollment or later) at which administration of the allocated intervention is commenced.

At the time of enrollment, all participants, are randomized to one intervention in every domain for which the participant is eligible for at enrollment or might become eligible for depending on the progression of the state of their illness (i.e. randomization occurs once and only once at the time of enrollment).

For participants, who at the time of enrollment are eligible for a domain and for which the intervention will be commenced immediately, the allocation status is revealed immediately and the participant then commences treatment according to their allocated intervention. This is referred to as Randomization with Immediate Reveal and Initiation.
In circumstances where the participant is eligible for inclusion in the REMAP but is not eligible for a domain at the time of enrollment but might become eligible if the participant’s state changes, the participant’s allocation status is revealed only if and when the patient enters the state that confers eligibility. This is referred to as **Randomization with Delayed Reveal**.

Another situation applies when eligibility is determined by information that relates to the condition of the patient at the time of initial assessment of eligibility and is relevant to determination of eligibility but is not known until later. In this circumstance, the participant’s allocation status can be revealed when the additional information becomes available. Examples of this type of information include the results of microbiological tests and the outcome of a request for consent. Information related to the safety of an intervention in individuals that may change between the time of initial assessment of eligibility and initiation of an intervention may also be reassessed and be used to determine if an allocation status will be revealed. Where initiation of the intervention is deferred pending availability of this additional information, this is referred to as **Randomization with Deferred Reveal**. It is noted that submission of information regarding microbiological results, consent, or safety information occurs without knowledge of allocation status. Variation in relation to the timing of revealing and initiation of an intervention has implications to the treatment-by-treatment interactions that are potentially evaluable.

Analysis of participants who are enrolled in one or more domains on the basis of Randomization with Immediate Reveal can be conducted within a state, for which membership occurs for at least some participants at the time of enrollment. However, the analysis within this state will also include participants who are enrolled in the same domain on the basis of Randomization with Delayed Reveal with their eligibility for the act of revealing allocation status being defined by progression to the same state at some time-point after enrollment. Participants who are randomized within such a domain, at time of enrollment, but never enter a state that corresponds to eligibility for a domain never have their allocation status revealed and do not contribute to the analysis of treatment effect for interventions in that domain. In this regard, the ITT principle is not violated as the allocation status of such participants is never revealed. The models that are used to provide statistical...
analysis of the effect of an intervention within a domain that is contained wholly within one state are not able to evaluate interactions with interventions in domains that are defined in different states.

The final scenario to consider involves participants who are enrolled in one or more domains on the basis of Randomization with Deferred Reveal within a stratum. For such participants, their allocation status is revealed at, or close to, the time of deferred initiation of the intervention, when additional information necessary to establish eligibility has become available but relates to information that applies at baseline. Participants in this category are analyzed within baseline stratum in an ITT fashion. As such, the model allows evaluation of interactions with treatments in other domains that share the same stratum. Within such a domain, it can be assumed that there will be some participants who are never eligible to commence receiving the intervention (for example, due to death, or never reaching the defined criteria for the intervention to be commenced) and do not receive the intervention. However, all participants who have an allocation status revealed, even if the intervention is never administered, are analyzed according to and in compliance with the ITT principle.

7.8.3.7. Treatment-by-treatment interactions

Where specified in the statistical model, the treatment effect of an intervention is allowed to vary depending on treatment allocation in another domain (i.e. allow evaluation of treatment-by-treatment interaction). A BHM is used for all treatment-by-treatment interactions. In the BHM, a hyperprior is used for the differing treatment-by-treatment interaction effects. The standard deviation of the hyperprior, lambda, is a modeling starting estimate for the variation in the magnitude of the difference in treatment effect dependent on an intervention assignment in another domain. By default, the starting estimate of the difference is zero (i.e. no interaction). The lambda parameter influences the extent to which the treatment effect of different interventions is permitted to vary dependent on intervention assignment in other domains. At the commencement of a model, the lambda parameter must be set, for each domain by domain pair.
In this REMAP, only three options are permitted with respect to specifying the lambda parameter for each domain-domain pair. Firstly, lambda may be set to zero. The effect of this is that there are no treatment-by-treatment interactions being evaluated between interventions in those two domains. Alternatively, lambda may be set to a defined number between zero and infinity. This parameter value cannot be varied for different domain-domain pairs; a global REMAP value has been selected. This specified value for lambda places a constraint on the variance of the difference in treatment-by-treatment interaction. Borrowing occurs to the extent that it is supported by the accumulated data, but the setting of lambda influences the initial amount of borrowing and the degree of borrowing as data accumulates. The value of lambda that has been chosen has been determined by simulations to achieve a compromise between type I and type II error in baseline scenarios that assume either no interactions or moderate interactions exist. Where a value for gamma is specified in the model, in this REMAP the value of gamma will be 0.075. The third choice is to allow no borrowing of the treatment-by-treatment interactions. This is equivalent to selecting a lambda of infinity. This choice would be the most aggressive choice in estimating treatment-by-treatment interactions.

The lambda that will be set for each domain-domain pair is specified in each DSA.

7.8.3.8. Nested analysis of interventions within a domain

Within domains in which there are three or more interventions, some interventions may be more likely to have a similar treatment effect. There are several examples of such similarity. For example, the interventions within a domain may comprise a no intervention option and two doses or strategy of administration of the same intervention, or two or more interventions within a domain may belong to the same class of drug than one or more other interventions in that domain.

In situations in which interventions may be more similar than others, the model may nest the more similar interventions within a higher-level intervention category that comprises all the interventions deemed similar. In this situation, and to evaluate the occurrence of a Statistical Trigger, there are two models for analysis. Firstly, all patients receiving the nested interventions, treated as a single combined intervention, are compared with all other
interventions in the domain. Secondly, all interventions are modeled individually. In this analysis, the interventions within a nest are modeled using a BHM incorporating the nesting structure. The BHM has a hyperprior specified for the shrinkage across interventions within the nest. This analysis will compare all interventions within a domain to all other interventions. This BHM analysis is used for the RAR assignments.

Whether nested analysis will be performed and, if so, the membership of category of more similar interventions will be specified in the DSA.

7.8.3.9. Current strata and states

Prior to COVID-19, REMAP-CAP enrolled patients with severe CAP who were admitted to the ICU with either shock or respiratory failure. The key states in which these patients could be classified were:

- Shock, defined in 2 categories, present or absent, with present defined as the patient is receiving continuous infusion of intravenous vasopressor or inotrope medications at the time of enrollment
- Hypoxemia, defined in 3 categories, comprising participants who are not receiving invasive mechanical ventilation; participants who are receiving invasive mechanical ventilation and have a ratio of arterial partial pressure of oxygen to fractional inspired concentration of oxygen (P:F ratio) of ≥ 200 mmHg or are receiving invasive mechanical ventilation with the Positive End-Expiratory Pressure (PEEP) set to less than 5 cm of water (irrespective of the P:F ratio); and participants who are receiving invasive mechanical ventilation with a PEEP of 5 cm of water or more and have a P:F ratio of <200 mmHg.

Of these states, 'shock at presentation' was also incorporated as a stratum in the model.

In response to the COVID-19 pandemic, the ITSC has adopted a COVID-19-specific pandemic model. In that model, the existing structure for patients admitted to the ICU and stratified by shock remains unchanged. However, in addition, as per section 7.4.3 of the Pandemic Appendix to the REMAP-CAP core protocol, the entry criteria have been broadened to allow patients to be enrolled who present in an additional state characterized as meeting the criteria for COVID-19 pneumonia, but not meeting the severity threshold of ICU admission and either cardiovascular or respiratory failure.
Thus, these two states are called:

- **severe**: meets the original REMAP CAP criteria
- **moderate**: hospitalized but not meeting the REMAP CAP criteria for ICU admission plus either cardiovascular or respiratory insufficiency

Patients who are seen, suspected or proven to have COVID-19, but are not admitted to hospital are assumed to be mild, but that state is not currently evaluated in the REMAP. The new moderate state can be used by domains that test interventions suitable for patients who present to hospital with lower acuity, and is incorporated in the pandemic statistical model (see Statistical Analysis Plan Appendix). The state at enrollment can be used as a strata (moderate versus severe) for the evaluation of differential treatment effects, dependent on the state at which they were initiated.

All the domains to which each strata or state applies, the unit-of-analysis (which determines which if any treatment-by-strata interactions are evaluated in the model), the relationship between the timing of domain eligibility and the revealing of allocation status, whether nested analysis will occur, and what treatment-by-treatment interactions will be evaluated are specified in each DSA.

7.8.3.10. Confirmation of COVID-19 infection strata

Both confirmed and suspected patients are enrolled. Confirmation of COVID-19 infection is subsequently defined in two categories, present or absent, based on the results of microbiological tests. Any patient with clinically suspected COVID-19 who is not tested or the result is not yet known will be deemed positive. The availability and interpretation of microbiological tests for COVID-19 are changing. An operational document will be used to specify how different tests are interpreted. It is noted that COVID-19 confirmed status is defined by the final results of testing for the pandemic organism, which may include analysis of samples collected after enrollment where it is reasonable to presume that the sample reflected COVID-19 status at time of enrollment.

Because the sensitivity of microbiological testing for COVID-19, like other pandemic organisms, may not be known at the beginning or even during the pandemic, it is
anticipated that initial analysis will occur without application of this confirmation status strata. However, this would be applied when there was sufficient confidence about the operating characteristics of diagnostic tests. If the COVID-19 confirmation status is applied, the probabilities derived from patients who have confirmed infection will be used to determine the RAR proportions for patients receiving treatment assignments in the COVID-19 domains. Further details are provided in the master REMAP CAP documents.

7.8.3.11. Pre-specified subgroup analysis after achievement of a Platform Conclusion

Following the achievement of a Platform Conclusion it is permissible for additional sub-group analyses to be conducted. The variables that specify such sub-groups are outlined *a priori* in each DSA. These variables are different to those that define strata or states in the model and are not used in determination of a Statistical Trigger or RAR for that domain. In a domain in which the unit-of-analysis comprises two or more stratum, additional sub-group analyses can be conducted for variables that do specify stratum that have been combined to determine the unit-of-analysis.

All such analyses will only be conducted following the determination of a Platform Conclusion and, although reported, such analyses are always regarded as preliminary. Following a Platform Conclusion, the results of a pre-specified subgroup analysis may be used to make changes to the model and, where appropriate and to an appropriate degree, data derived from the REMAP can be used to set the prior distribution at the commencement of the new model.

7.8.4. Bayesian Statistical modeling

Inferences in this trial are based on a Bayesian statistical model, that will calculate the probability of superiority, inferiority, and equivalence of the interventions (known as a posterior probability distribution) within a unit-of-analysis that is defined by one or more stratum, taking into account the evidence accumulated during the trial (based on data on the outcomes of participants) and on assumed prior knowledge (known as a prior distribution). For the evaluation of the main effects of interventions within a domain (and evaluation of regimens) the default design assumes that parameters in the model have uninformative prior distributions at the first adaptive analysis. This means that any
subsequent Platform Conclusion is not capable of being influenced by any discretionary choice regarding the pre-trial choice of prior distribution (i.e. it is the most conservative approach, making no assumptions regarding the prior distribution). At each subsequent adaptive analysis, the prior distribution is determined by all accumulated data available at the time of the adaptive analysis. The Bayesian approach is seen as continually updating the distribution of the model parameters.

It is not precluded that, under certain circumstances, such as during a pandemic and where there was strong prior evidence along with an ethical imperative to evaluate a particular choice of therapy, that the design could allow an informative prior to be used for the analysis of results from the trial. It may also be permitted to use an informative prior when data that is incorporated in the informative prior is derived from patients already randomized within this REMAP. If informative priors are used this will be specified in the relevant DSA.

The study design can use informed priors to guide some elements of the design, such as for the evaluation of interaction terms, and will be described in the Statistical Analysis Appendix. As outlined above, gamma will be set to allow and influence the evaluation of treatment-by-strata interactions and lambda will be set to allow and influence the evaluation of treatment-by-treatment interactions.

This method of statistical analysis differs from conventional (frequentist) trials. Frequentist statistics calculate the probability of seeing patterns in the data from a trial if a hypothesis is true (including patterns not observed). This approach relies on assumptions about frequency distributions of trial results that would arise if the same trial were repeated ad infinitum. Thus, it requires specific sample sizes, which in turn requires pre-experiment assumptions regarding plausible effect sizes and outcome rates. Although many clinicians are comfortable with this approach, the pre-trial assumptions are frequently incorrect, and the design lacks the flexibility either to easily address the complex questions more reflective of clinical practice or to make mid-trial corrections when the pre-trial assumptions are wrong without concern that the integrity of the final analysis is violated. To allow increased flexibility and yet still generate robust statistical inferences, REMAP relies on an overarching Bayesian, rather than frequentist, framework for statistical inference.
A Bayesian approach calculates the probability a hypothesis is true, given the observed data and, optionally, prior information and beliefs. The advantage of this approach is that, as more data are accrued, the probability can be continually updated (the updated probability is called the posterior probability). In this trial, frequent adaptive analyses will be performed, creating a very complicated sample space, and hence the Bayesian approach is a very natural one for these adaptive designs. The characterization of the risk of false positive error, or power, are done through Monte Carlo trial simulation. In contrast to frequentist confidence intervals which have awkward direct interpretation, Bayesian analyses return probability estimates that are directly interpretable as probabilities that statements are true (like the probability that one intervention is superior to another).

A number of variables are incorporated into the statistical model so as to provide ‘adjustment’. The variables for which such adjustment will be made will be the country in which a participant is treated, changes in outcome that occur over time (era), stratum and state at enrollment (shock and hypoxemia as measures of severity of illness), and age.

The main effect in the model is the treatment effect of each intervention. Each stratum, combination of stratum, or state (where eligibility is defined by a state) is analyzed separately but the model captures the commonalities across such sub-groups. Additionally, and where specified, the statistical model allows evidence relating to the effectiveness of an intervention in one stratum to contribute (via ‘borrowing’) to the estimation of the posterior probability in other strata, but this only occurs to the extent that treatment effect is similar in different strata.

When a Platform Conclusion is achieved, the results derived from the model, including any contribution from borrowing, will be reported. It is acknowledged that the estimate of treatment effect for a stratum may be contributed to by borrowing from adjacent strata but the results from the strata that have contributed to borrowing will not be reported. The results of these analyses are used to achieve the primary objective of the trial which is to determine the effectiveness of interventions and, where specified, the extent to which that effectiveness varies between strata (intervention-stratum interaction). Additionally, but only where specified a priori, the model is able to estimate the effectiveness of an intervention in one domain contingent on the presence of an intervention in another
domain (treatment-by-treatment interaction). Although the model can identify an optimal regimen this is not the primary objective of the trial.

Greater detail of the methods within the Bayesian model to be applied in this REMAP are provided in the Statistical Analysis Appendix. The adaptive analyses will use data submitted from participating sites to their regional database. Each provider of regional data management will provide regular updates of data to the SAC for utilization in the adaptive analyses. The frequency of adaptive analyses will occur approximately monthly, unless the amount of data in a month is deemed insufficient. The timely provision of outcome data from participating sites is critically important to the conduct of frequent adaptive analyses.

7.8.5. Statistical Handling of Ineligible Participants

The goal of this REMAP is to enroll as wide a participant population as possible. Because of this and the desire to explore multifactorial regimens it will not be uncommon that a participant will be ineligible for single interventions or entire domains, or interventions may be temporarily unavailable for use. In this section we present the details for how this REMAP deals with these possible circumstances.

If an intervention is unavailable at the time of randomization due to site restrictions (for example, exhausted supply or unavailable machinery) then the participant will be randomized to all remaining interventions and this participant will be included in the primary analysis set as though they were randomized unrestricted to their assigned intervention.

If a participant is ineligible for an entire domain then that participant will not be randomized to an intervention from that domain. The participant will be randomized to a regimen from all remaining domains. As long as the participant is randomized within at least one domain they will be included in the primary analysis. For the ineligible domain the participant will be assigned a covariate for that domain reflecting the ineligibility for the domain. This allows the model to learn about the relative efficacy of the remaining interventions in the domains in which the participant has been randomized. If there is a domain with only two interventions and participant is ineligible for one of the two then the participant will be treated as though they are ineligible for the domain. If there is a domain with more than
two interventions but a participant is ineligible for all but one then the participant will be deemed ineligible for the domain. If a participant is only eligible for one intervention within a domain the allocation process may still provide a recommendation that the only available intervention should be provided to the participant (but this is so as to reinforce trial processes associated with successful embedding and such patients will not be included within any analysis of the relevant domain).

If there is a domain with more than two interventions and the participant is ineligible for at least one due to a patient-level factor (for example known intolerance to an intervention), but eligible for at least two, then the participant will be randomized among those interventions that the participant is eligible to receive. The participant will have their assignment included in the primary Bayesian model with an appropriate covariate identifying their ineligibility status that takes into account that a patient-level factor that determines partial eligibility could be associated independently with outcome. The impact of participants with partial eligibility will be taken into consideration by the DSMB at the time of consideration of whether a Platform Decision is appropriate following a Statistical Trigger.

7.8.6. Intervention Superiority Statistical Trigger

At any adaptive analysis, if a single intervention has at least a 0.95 posterior probability of being a member of the optimal regimen, for that unit-of-analysis, then that intervention will be deemed as being superior to all other interventions in that domain in that target population. This Statistical Trigger may also be applied for a state that defines the target population for a domain.

7.8.7. Intervention Inferiority Statistical Trigger

At any adaptive analysis, if a single intervention has less than a 0.05 posterior probability of being a member of the optimal regimen, for a unit-of-analysis, then that intervention will be deemed as being inferior for that target population. If superiority and inferiority were to be discovered simultaneously (for example when there are two interventions), the result will be interpreted as demonstrating superiority. An asymmetrical inferiority statistical trigger may be set when an active intervention is evaluated against no active treatment within the
same domain. This Statistical Trigger may also be applied for a state that defines the target
population for a domain.

7.8.8. Intervention Equivalence Statistical Trigger

If two interventions within a domain, for a unit-of-analysis, have at least a 0.90 probability
of being within a pre-specified delta for the primary endpoint then these interventions will
be deemed as being equivalent. The size of the pre-specified odds ratio delta is 0.20,
meaning equivalence is reached with at least a 90% probability of neither intervention
increasing the odds ratio of the primary endpoint by more than 0.20. An odds ratio delta of
0.2 has been chosen on the basis that it is consistent with guidance from the Food and Drug
Administration (FDA) (U.S. Department of Health and Human Services, 2016) and the
European Medicines Agency (EMA) (European Medicines Agency, 2005), as well as discussed
in academic literature, and the magnitude of treatment effect that has been specified in
published superiority trials that enroll patients who are critically ill (Aberegg et al., 2010,
Ware and Antman, 1997, European Medicines Agency, 2005, U.S. Department of Health and
Human Services, 2016). A measure of relative treatment effect (odds ratio) is specified,
rather than an absolute difference in treatment effect. This choice is made because it is
reasonable to expect the mortality rates to vary between strata, and the relative effect is a
more robust analysis method across these differences.

In a domain with two interventions equivalence is evaluated between the single pair of
interventions. In a domain with more than two interventions, equivalence is evaluated for
every possible pairwise comparison.

A DSA may define levels of delta for equivalence that are different from the default delta.
This includes the possibilities of specifying a delta that may be asymmetrical for some or all
pair-wise comparisons or both. The DSA will set out the rationale for any variation in delta
and may include, but are not limited to, cost or burden.

This Statistical Trigger for equivalence may also be applied for a state that defines the target
population for a domain.
7.8.9. Action when a Statistical Trigger is achieved

7.8.9.1. Introduction

If a Statistical Trigger is achieved this will be communicated by the SAC to the DSMB. Subject to the DSMB confirming that a Statistical Trigger has been reached validly, the DSMB will oversee a range of actions, as follows.

7.8.9.2. Actions following Statistical Trigger for superiority

If an intervention triggers a threshold for superiority and the DSMB declares this as a Platform Conclusion, the intervention is deemed as being superior. At that point randomization to all other remaining interventions in the domain in that unit-of-analysis will be halted at sites at which the superior intervention is available (randomization to the non-superior interventions may continue at sites at which the superior intervention is not available pending its availability). The result will be communicated to the ITSC who will take responsibility to undertake Public Disclosure as soon as practicable with the dissemination of the research result via presentation or publication or both. As this REMAP occurs during pandemic situations, Platform Conclusions relevant to the public health of patients suspected or proven infected with COVID-19 will be conveyed promptly to public health authorities by the ITSC and DSMB.

Within the REMAP and at sites with access to the superior intervention, all participants will be allocated to the superior intervention (while still being randomized to interventions from the other domains). In this regard the domain remains active with what can be considered as 100% RAR to the superior intervention, pending the addition of any new interventions to be evaluated against the current superior intervention. It is also possible that a superior intervention will be retained but subject to further evaluation, by randomization, to refine the optimal characteristics of the superior intervention (for example duration of therapy or optimal dose).

7.8.9.3. Actions following Statistical Trigger for inferiority

If the trial triggers a threshold for inferiority and the DSMB declares this as a Platform Conclusion, the intervention is deemed as being inferior. At that point the intervention will
not be randomized to any more participants in that unit-of-analysis. The result will be communicated to the TSC who will take responsibility to undertake Public Disclosure as soon as practicable with the dissemination of the research result via presentation or publication or both.

Where a Platform Conclusion is reached for superiority or inferiority, the DSMB may recommend that Public Disclosure should be delayed until additional results are available, so as to allow further recruitment to evaluate interactions between interventions in different domains or for other clinically or statistically valid reasons. However, declaration of a Platform Conclusion will always result in the removal of inferior interventions from a domain and that all eligible participants within the REMAP receive a superior intervention.

7.8.9.4. Actions following Statistical Trigger for equivalence

If a Statistical Trigger arises because one or more pairs of interventions are deemed as being equivalent within a unit-of-analysis, this will be communicated to the TSC by the DSMB. The TSC in conjunction with the DSMB may undertake additional analyses, for example, of clinically relevant secondary endpoints.

The approach to a Statistical Trigger for equivalence is different depending on the number of interventions within a domain.

For domains with only two interventions a valid Statistical Trigger for equivalence will be reported as a Platform Conclusion. With respect to the adaptation of the domain, the following actions are possible:

- Removal of the domain from the Platform
- Switching the allocation status to deterministically assign one of the Interventions, for example the less burdensome or less expensive intervention
- No change to the interventions within the domain with continuation of RAR. This could be to further evaluate secondary endpoints, a smaller delta of equivalence, or interest in interactions with other Interventions. Such changes would require amendment to the DSA.

Factors that should be taken into account by the DSMB and the TSC include the results of the primary analysis, analysis of clinically relevant secondary end-points, the possibility of
treatment-by-treatment interactions, the relative burden and cost of the two interventions, the clinical interpretation of the adequacy of the delta, and the possibility that ongoing randomization with a smaller delta might also allow a Statistical Trigger for superiority (with a small effect size).

The options following a Statistical Trigger for a pair of Interventions in a Domain with three or more Interventions are more complex. Within a domain with three or more interventions the information provided by the DSMB to the ITSC may include specification of the ordinal rank of the equivalent interventions within the domain. With respect to reporting of Platform Conclusions and adaptations of the domain the following actions are possible:

- A pair of equivalent interventions may be compressed into a single group for the purposes of ongoing analysis. Both interventions continue to be interventions that are available within the domain for allocation, but the primary analysis considers the effect of the two interventions as a single group, where a balanced randomization will be assigned to each of the intervention pair within this compressed group. Secondary analyses can continue to be conducted to determine if equivalence is maintained with the possibility of the intervention being restored as individual interventions if results no longer support equivalence. It is acknowledged that re-analysis of the domain immediately following compression of one (or more) pairs of equivalent interventions may result in the occurrence of other Statistical Triggers (e.g. a compressed pair may be superior or inferior to all remaining interventions). Any statistical Trigger that results from compression of one or more pairs will be responded to as outlined in this section with reporting of the cascade of Statistical Triggers. Compression of a pair of interventions can occur with or without reporting of a Platform Conclusion.

- Removal of one of the pair of equivalent interventions from the domain, for example the more burdensome or more expensive intervention, which will result in a reporting of a Platform Conclusion.

- No change to the interventions within the domain with continuation of RAR. This could be to further evaluate secondary endpoints, a smaller delta of equivalence, or interest in interactions with other interventions. Such changes would require amendment to the DSA. This could occur with or without reporting a Platform Conclusion.

Factors that should be taken into account by the DSMB and the ITSC include the results of the primary analysis, analysis of clinically relevant secondary end-points, the possibility of
treatment-by-treatment interactions, the relative burden and cost of the two interventions, the clinical interpretation of the adequacy of the delta, the possibility that ongoing randomization with a smaller delta might also allow a Statistical Trigger for superiority (with a small effect size) and the ordinal position of the equivalent pair within the domain.

In a domain that comprises three or more interventions, but in which two or more interventions are analyzed in a nested manner, the nested group may be combined for analyses of equivalence. Where compression converts a domain with three or more interventions into a domain with two interventions (and data continues to support equivalence of the compressed interventions) such a domain will be regarded as a two-intervention domain for the purposes of evaluation of Statistical Triggers for superiority, inferiority, and equivalence.

If a Platform Conclusion is reached, the ITSC will take responsibility to undertake Public Disclosure as soon as practicable with the dissemination of the research result via presentation or publication or both. There is no automated adaptation when equivalence is deemed to have occurred. Where appropriate each DSWG will produce an operational document, that is publicly accessible, that considers a range of plausible scenarios and provides guidance as to the actions that should occur in the event of a Statistical Trigger for equivalence for different pairs of interventions. If any of these documents are updated, previous versions will be archived but continue to be publicly accessible.

7.8.10. Analysis set for reporting

The primary analysis set that will be used for reporting a Public Disclosure will comprise all participants who are analyzed at the time the adaptive analysis results in the occurrence of a Statistical Trigger. As such, there will be some participants who have been randomized but are not included within this analysis, either because participants have not yet completed 90 days of follow up or because data for a participant who has completed 90 days of follow up has not yet been submitted. At the time of Public Disclosure, a secondary analysis will also be reported that comprises all participants who are evaluable through to the point at which there was cessation of randomization to the relevant comparator arms.
7.8.11. Simulations and statistical power

The design of the trial, at initiation, and in conjunction with the planning of the introduction of new interventions within a domain or of new domains, will be informed by the conduct of extensive simulations using standard Monte Carlo methods. Simulations will be updated whenever a new intervention is added within a domain or whenever a new domain is added to the REMAP. However, simulations will not be updated when an intervention is removed from a domain because of the declaration of a Platform Conclusion that the intervention is inferior. These simulations will evaluate the impact of a range of plausible scenarios on the statistical properties of the trial.

Existing simulations indicate that when a single intervention in a domain with two interventions is beneficial, with a constant benefit for all participants, the power to be determined superior to the complement intervention as a function of its odds-ratio benefit is greater than 90% when there is at least a 25% odds-ratio decrease in the probability of mortality for the funded sample size of 6800 participants. The timing of these conclusions of superiority have a median time of less than 2000 participants. The probability that an intervention will be deemed superior to a complementary intervention when in truth the two are equal (a type I error) is typically less than 2.5%.

The results of detailed simulations of current domains is located in the Simulations Appendix which is maintained as an operational document that is publicly accessible and updated as required.

7.8.12. Updating model after monitoring

If any variable that contributes to the model is identified to be inaccurate at a monitoring visit, the data will be corrected and utilized for the next interim analysis. Any change to a previous statistical trigger will be reviewed by the DSMB to determine the implications. The DSMB will advise the TSC if there is any material change in a Platform Conclusion which, if published, will be reported to the journal as an erratum.
7.9. **Co-enrollment with other trials**

Co-enrollment of participants in other research studies, including interventional trials, is strongly encouraged. The principle is that co-enrollment should always occur and is only not permitted when there is a clear threat to the validity of either study or it would materially influence the risk to participants. Decisions regarding co-enrollment with other trials will be made on a trial-by-trial basis. Where a potentially co-enrolling trial is being conducted in more than one region in which the REMAP is being conducted the decision regarding co-enrollment will lie with the ITSC. Where a potentially co-enrolling trial is being conducted only in one region in which the REMAP is being conducted the decision regarding co-enrollment will lie with the RMC. In all circumstances the ITSC and RMCs should liaise regarding decisions about co-enrollment. Decisions regarding co-enrollment with other trials will be distributed to participating sites as an operational document and will not require or involve amendment of this protocol.

7.10. **Cooperation between the REMAP and other trials with overlapping populations or interventions**

7.10.1. Cooperation of the entire REMAP-CAP program with other trials

During the life-time of the REMAP it is likely that there will be many other clinical trials that will have inclusion and exclusion criteria which would include participants who are eligible for this REMAP. During the interpandemic period, this includes, obviously, trials with a primary interest in patients with CAP, but could also include patients with the Acute Respiratory Distress Syndrome (ARDS) and patients with severe sepsis or septic shock. Such trials will likely test a range of interventions, some of which may also be intervention options within this REMAP. This REMAP seeks to cooperate and coordinate maximally with other trials. Examples of such cooperation and coordination would include, but not be limited to, utilization of REMAP infrastructure for screening and recruitment to other trials, sharing of data collected by the REMAP, and sharing of allocation status so as to allow incorporation of allocation status within analysis models.
Where another trial is evaluating an intervention that is also included within this REMAP, each site (or region) would need to establish rules that determine circumstances in which each trial has preference for recruitment. Where another trial and this REMAP are evaluating different interventions the extent to which cooperation is possible will also be determined by the extent to which the interventions are compatible, i.e. capable of having their effect evaluated independently within each trial.

7.10.2. Cooperation of the REMAP-COVID component of REMAP-CAP with other trials

There are a large number of trials registered for the study of COVID-19 (www.covid19-trials.org). As noted above, this REMAP is open label and highly flexible with regard to co-enrollment. In particular, the ITSC will work with other trial steering committees to explore rapid sharing of allocation assignments pertinent to any adaptive trial decisions both in this REMAP and in other adaptive trials, under appropriate data protections. This REMAP will also explore structured relationships with other trials that can exploit a coordinated approach around treatment assignments and states.

For example, in a given region, a cooperation could be established between this REMAP and another trial where this REMAP restricts enrollment to the severe state (the traditional enrollment criteria for REMAP-CAP) while the other trial enrolls patients earlier at hospital arrival (the moderate state). In such a setting, if the other trial assigns a patient in the moderate state to an intervention that also exists within one of this REMAP's domains, and the patient subsequently progresses to the severe state and is enrolled in this REMAP, the intervention assignment from the earlier trial can, and the patient will only be randomized to interventions within the other domains. The REMAP-COVID pandemic model has the capability to account for these random assignment-state relationships, including if the assignment occurred within another trial (see Statistical Analysis Plan Appendix).

7.11. Registry of non-randomized patients

In some locations, the REMAP may be nested within a registry. Where this occurs the operation of the registry, including eligibility criteria, ethical issues, and variables that will be collected, will be described in a separate Registry Appendix.
7.12. **Criteria for termination of the trial**

The COVID-19 portion of REMAP-CAP is designed to allow continued research in acutely ill COVID-19 patients. The platform allows for the study to be perpetual, with multiple different domains that can be evaluated at any one time, and over time. Frequent adaptive analyses are performed to determine whether the interventions under evaluation are still eligible for further testing or randomization should be stopped due to demonstrated inferiority, superiority or equivalence.

It is anticipated that after inclusion of the initially planned sample size, the COVID-19 portion would continue to include additional participants and test additional domains and/or interventions until one of the following occurs:

- COVID-19 is no longer deemed to be a public health problem
- The effectiveness and/or cost-effectiveness of all interventions are known and there are no new plausible interventions to test

The decision to cease the study of COVID-19 patients specifically is to be made by the ITSC. At this time, data from COVID-19 patients can also be incorporated back within the broader REMAP CAP program and combined with that of other patients, as specified in the master REMAP CAP core protocol, pandemic appendix, and statistical analysis plan (www.remapcap.org). Should the whole REMAP CAP study be stopped, the end of trial is the date of the last scheduled follow up for any participant.

8. **TRIAL CONDUCT**

8.1. **Site time-lines**

8.1.1. Initiation of participation at a site

A range of options are available for the sequence of activities by which a site commences participation. The following outlines the default sequence of participation. The first level of participation is termed ‘observational only’. During this stage eligible participants will be identified, preferably using a process of embedding with recognition by clinical staff and registration on the study website as soon as eligibility is recognized. Treatment decisions
will be made by that site’s clinical staff, and observational data using the study CRF or a subset of the CRF will be collected. The next level of participation is termed ‘single domain’. During this time period, eligible participants are identified and randomized, but only within a single domain. The next level of participation is termed ‘multiple domains’ although this would typically include only the addition of a single domain at any one time-point with staggered introduction of additional domains. Decisions about transition through levels would be made by the site, in conjunction with the RCC, and would be influenced by factors including speed and accuracy of identification of eligible participants, accuracy of information provided at time of randomization, compliance with allocated treatment status, and timeliness of reporting of outcome variables that are used to determine RAR algorithms. It is also permissible to commence the trial with multiple domains being active at initiation.

- **Vanguard sites**

In each region or at the initiation of a new domain or both, the trial may consider commencing with only a small number of vanguard sites. The purpose of commencing the trial at vanguard sites is to learn about the effectiveness of different options for trial processes so that this information about the most effective trial processes can be shared with subsequent non-vanguard sites. If a site is acting as a vanguard site this will be specified in any application for ethical approval at that site.

8.2. Recruitment of participants including embedding

8.2.1. Embedding

The trial is designed to substitute allocation of treatment status by randomization where otherwise a treatment decision would have been made by clinical staff (where it is clinically and ethically appropriate to do so), and for this to occur at the time that the treatment decision would have otherwise been made. It is not essential that embedding is used to achieve recruitment and randomization but it is preferable and it is encouraged that participating sites work in conjunction with the trial team to achieve embedding wherever possible and as soon as possible.
The success of embedding can be evaluated by the proportion of eligible participants who are recruited and randomized, that recruitment and randomization occurs as soon as possible after eligibility occurs, and that there is compliance with the allocated intervention. Successful embedding will enhance the internal and external validity of the results generated by the trial.

Each site, taking into account its own clinical work practices, will be asked to develop internal processes that will be used to achieve successful embedding. Wherever possible the RCC will advise and assist sites to achieve successful embedding. In brief, each participating site will identify their ICU admission procedures that occur with each new patient and then align these procedures to facilitate assessment of eligibility by clinical staff who provide routine care for each patient. This can be achieved through several methods including checklists on electronic Clinical Information Systems (eCIS).

8.2.2. Participant recruitment procedures at participating sites

Once screened and identified as eligible the clinical staff (medical or nursing) or research staff will randomize the participant. Standard Operating Procedures (SOPs) will be developed to guide staff who undertake randomization. For example, in ICUs with an eCIS, an integrated website link may be used to allow direct access to the trial randomization webpage and, where possible, provide a summary (or direct population from the eCIS) of information that is required to be entered into the randomization web-site. To complement this system the research staff in each ICU will review patients admitted each day to assess the suitability of patients deemed not eligible out of hours, either because they were missed on screening or because the clinical situation has changed.

8.3. Treatment allocation

An eligible participant will receive a treatment allocation that is determined for all domains for which the participant is eligible to receive at least one of the available interventions. The management of the randomization process in each region is specified in each RSA. Information related to RAR is presented in the Interventions section of the Trial Design (Section 7.5.2) and in the Statistical Analysis Appendix. As noted elsewhere, all randomized allocation will be determined at the time of initial enrollment, but allocation status will not
be made known for domains that operate using Randomization with Delayed Reveal (see Section 7.8.3.4). If the participants clinical condition changes and enters the state that confers eligibility this information will be provided to the randomization web-site and the allocation status will be revealed to the site.

8.4. Delivery of interventions

8.4.1. Treatment allocation and protocol adherence at participating units

In conjunction with participating sites, trial management staff will develop generic and site-specific documents that outline processes for implementation of and facilitate adherence with participant’s allocated treatment status. Wherever possible these will seek to integrate trial processes with existing routine treatment processes to allow seamless adoption of the allocated treatments. For example, after randomization the clinical staff will be directed to use a pre-populated order sheet, necessary for the treating clinicians to authorize and for a bedside nursing staff to follow allocating treatment processes for that individual participant. It is intended that this process will not only reduce the complexity of ordering the study treatments but also reduce errors and increase adherence to the allocated protocol.

With respect to blinding, the default position within the REMAP is that treatments determined by randomization will be provided on an open-label basis. Where interventions are conducted on an open-label basis, all members of the ITSC and all other staff associated with a RCC of the trial will remain blinded until a Platform Conclusion is reported by the DSMB. Although the default is the provision of open-label treatments the blinding of treatment status is not precluded within the REMAP. Whether interventions are open-label or blinded will be specified in DSAs.

8.5. Unblinding of allocation status

Unblinding of any blinded treatment by site research staff or the treating clinician should only occur only in when it is deemed that knowledge of the actual treatment is essential for further management of the participant. A system for emergency unblinding will be provided in the DSA of any domain that includes interventions that are administered in a blinded fashion. Any unblinding process will ensure that the investigator can directly and rapidly
unblind in an emergency situation. All unblindings and reasons as they occur will be documented in the CRF. Unblinding should not necessarily be a reason for study drug discontinuation.

8.6. Criteria for discontinuation of a participant in the trial

Trial participants may be discontinued from the trial entirely or from one or more domain-specific interventions according to predefined criteria for discontinuation. The criteria for discontinuation specific to each domain are specified in the relevant DSA.

Criteria for discontinuation from the REMAP interventions entirely include:

1. The treating clinician considers continued participation in the REMAP interventions are not deemed to be in the best interests of the patient
2. The participant or their Legal Representative requests withdrawal from ongoing participation in all REMAP interventions

In the case of discontinuation, the reasons for withdrawal will be documented. Consent to the use of study data, including data collected until the time of discontinuation and data to inform primary and secondary outcome data will be requested specifically from participants or their Legal Representative who request discontinuation. Following discontinuation of a REMAP intervention, participants will be treated according to standard hospital and ICU management. Participants who are withdrawn will not be replaced. All data will be analyzed using the ITT principle.

8.7. Concomitant care and co-interventions

All treatment decisions outside of those specified within the REMAP will be at the discretion of the treating clinician. As applicable, prespecified co-interventions related to specific domains will be recorded in the CRF and are outlined in the relevant DSAs.
8.8. Data collection

8.8.1. Principles of data collection

Streamlined data collection instruments and procedures will be used to minimize the workload in study sites. The CRF will be developed by the ITSC and made available to the participating sites as a paper and electronic CRF (eCRF) for ease of data collection. Data may be entered directly into the eCRF or first entered onto a paper copy of the CRF and entered subsequently into the eCRF. All data will be collected by trained staff who will have access to a comprehensive data dictionary. Information recorded in the CRF should accurately reflect the subject’s medical/hospital notes, must be completed as soon as it is made available, and must be collected from source data. The intent of this process is to improve the quality of the clinical study including being able to provide prompt feedback to the site staff on the progress, accuracy, and completeness of the data submitted. The eCRF will be web-based and accessible by a site or investigator specific password protected. Data collection tools to extract data directly from eCIS are also encouraged.

8.8.2. Variables to be collected

The generic variables to be collected for all domains in this REMAP are as detailed, indicatively, in the Core Protocol, below. Additional domain-specific variables are outlined in the relevant DSAs. Baseline variables are defined as at or before the time of randomization.

8.8.2.1. Baseline and required for randomization

- Overall REMAP Inclusion / exclusion check list
- Date and time of hospital admission
- Date and time of first ICU admission (if relevant)
- Domain-specific exclusion checklist
- Shock status
- Hypoxemia status

8.8.2.2. Baseline but not required for randomization

- Demographic data (date of birth, age, sex, estimated body weight and height)
- Co-existing illnesses and risk factors for pneumonia
- Source of ICU admission
- Acute Physiology and Chronic Health Evaluation (APACHE) II variables
- Sequential Organ Failure Assessment (SOFA) variables
- Intervention allocation status within domains and randomization number
- Results of microbiological testing

8.8.2.3. Daily from ICU admission until discharge from ICU or Day-21 whichever comes first

- Hypotension and administration of vasopressors/inotropes
- Administration of dialysis
- Administration of invasive or non-invasive ventilation
- P:F ratio components

8.8.2.4. ICU Outcome data

- Date and time of ICU discharge
- Survival status at ICU discharge
- Dates of ICU readmission and discharge

8.8.2.5. Hospital outcome data

- Date and time of hospital discharge
- Survival status at hospital discharge
- Discharge destination
- Results of microbiological testing

8.8.2.6. Antimicrobial Administration

- Administration of antibiotic medications
- Administration of antiviral medications

8.8.2.7. Outcome data

At the discretion of the site, unless specified otherwise in a RSA or DSA, and collected by phone:

- Survival status at 90 days
- Survival status at 6 months
- HRQoL measured by EQ-5D at 6 months
- Disability status measured by WHODAS at 6 months and baseline information to interpret disability
- Opinions and beliefs regarding participation in research (reported at 6 months)

8.8.2.8. **Process-related outcomes**

- Time from hospital arrival to randomization
- Time from hospital arrival to first ICU admission
- Selected co-interventions
- Compliance with allocated intervention(s).

8.8.3. **Data required to inform Response Adaptive Randomization**

This REMAP will use frequent adaptive analyses and incorporate RAR. All variables used to inform RAR will be pre-specified. The key variables include:

3. **Baseline and allocation status**
 a. Unique trial-specific number
 b. Location (Site code)
 c. Date and time of randomization
 d. Eligibility for each domain
 e. Intervention allocation for each domain
 f. Reveal status for each intervention allocation for each domain
 g. Age category
 h. Strata
 i. Shock or no shock
 j. State
 k. Location in ICU or not

4. **Outcome**
 a. 21-day ICU free days

Data fields required to inform the adaptive randomization process and Statistical Trigger will be pre-specified and will be required to be entered into the eCRF or electronically captured.
from the electronic health record within 7 days of death and within 28 days of enrollment in the REMAP if the participant is alive at day 28.

8.8.4. Blinding of outcome assessment

Wherever feasible outcome assessment will be undertaken by research staff who are blinded to allocation status. Such blinding will not be feasible for many outcomes, particularly those that occur while the participant is still admitted to an ICU or the hospital. However, the primary endpoint and key secondary endpoints are not variables that are open to interpretation and so accuracy will not be affected by outcome assessors not being blinded to allocation status.

8.9. Data management

8.9.1. Source Data

Source documents are where data are first recorded, and from which participants’ eCRF data are obtained. These include, but are not limited to, hospital records (from which medical history and previous and concurrent medication may be summarized into the eCRF), clinical and office charts, laboratory and pharmacy records, radiographs, and correspondence.

8.9.2. Confidentiality

All documents will be stored safely in confidential conditions. On all trial-specific documents, other than the signed consent, the participant will be referred to by a unique trial-specific number and/or code in any database, not by name. Information linking the participant’s medical data to database materials will be maintained in a secure location at the participating site. This information will not be transmitted to the members of the TSC or any DSWG. The key to code and recode participant identifiers will only be accessible to local site investigators (research nurse and principal investigator) but not to members of the central study team. ICU and coded individual subject data and records will be held in strictest confidence by the site investigator and healthcare staff and by all central research staff, as permitted by law.
8.10. Quality assurance and monitoring

The trial will be conducted in accordance with the current approved protocol, Good Clinical Practice (GCP), relevant regulations and SOPs.

8.10.1. Plans for improving protocol adherence and complete data

Data entry and data management will be coordinated by the Project Manager, including programming and data management support.

Several procedures to ensure data quality and protocol standardization will help to minimize bias. These include:

- Start-up meeting for all research coordinators and investigators will be held prior to study commencement to ensure consistency in procedures;
- A detailed dictionary will define the data to be collected on the CRF;
- The data management center will perform timely validation of data, queries and corrections if errors are found during quality control checks;
- Data monitoring will occur as described below.

8.10.2. Data Monitoring

The study will be monitored by a representative of the RCC. A site initiation teleconference or visit will be conducted before site activation. Routine monitoring visits will be conducted the frequency of which will be determined by each site’s rate of recruitment. Email and telephone communication will supplement site visits.

A monitoring report will be prepared following each visit and reviewed by the RMC if appropriate. A follow up letter will be sent to the principal investigator and research coordinator at the site and will be filed in the site investigator file.

Medical records, any other relevant source documents and the site investigator files must be made available to the representative of the RCC for these monitoring visits during the course of the study and at the completion of the study as needed.

Domain-specific monitoring and protocol adherence issues are addressed in each DSA.
8.11. **Data safety and monitoring board**

A single DSMB will take responsibility for the trial in all regions in which it is conducted. The DSMB compiled for this study will consist of 5-7 members; the chair has been selected to have expertise in clinical trial methodology, and to have experience with adaptive clinical trial design. Additional medical, statistical, and other experts will be selected to ensure all necessary expertise to oversee a trial of this complexity and scope. The DSMB will conduct its activities in accordance with a separate Charter; the Charter must be approved by the DSMB, and ITSC prior to the initiation of the trial. The DSMB will be unblinded to ensure the highest quality oversight of the trial, in accordance with current recommendations of regulatory authorities.

The DSMB will review received frequent updates of the trial’s adaptive analyses from the SAC. The role of the DSMB will be to ensure that the pre-specified trial algorithm is being implemented as designed, that the design remains appropriate from a scientific and ethical point of view, to confirm when a Statistical Trigger has been reached, and to either reach or recommend that a Platform Conclusion has been reached, as outlined in Section 7.8.9. Trial enrollment and conduct will be continuous.

The DSMB will not make design decisions. If the DSMB believes the trial’s algorithms are no longer acceptable from an ethical, safety, or scientific point of view it will make recommendations to the ITSC which has ultimate decision-making authority regarding the trial design. Where the DSMB and the SAC agree on a temporary deviation from the study protocol for safety reasons, they are not required to inform the ITSC of this decision. If the DSMB and SAC agree that a permanent change is necessary, the chairs of the DSMB, SAC and ITSC will meet to discuss the best way to proceed to ensure patient safety and the scientific integrity of the trial. Where the SAC and DSMB disagree on the need to deviate from the pre-specified trial design, the DSMB must inform the ITSC of their recommendations and the rationale for these.
8.12. **Safety monitoring and reporting**

8.12.1. **Principles**

The principles used in the conduct of safety monitoring and reporting in this trial are those outlined by Cook et al. in the manuscript “Serious adverse events in academic critical care research”. (Cook et al., 2008) A high proportion of critically ill patients who will be enrolled in this trial will experience mortality or substantial morbidity. The case-fatality proportion for critically ill patients with CAP is likely to be in the order of 20 to 30% and high proportions of patients will have one or both of laboratory abnormalities or complications of critical illness and its treatment. Patients who are critically ill, irrespective of whether or not they are enrolled in a trial, will typically experience multiple events that would meet the conventional definition of a Serious Adverse Event (SAE).

Trials involving vulnerable populations must have research oversight that protects patient safety and patient rights and also ensures that there can be public trust that the trial is conducted in a manner that safeguards the welfare of participants. The strategy outlined for the definition, attribution, and reporting of SAEs in this trial is designed to achieve these goals but does so in a way that seeks to avoid the reporting of events that are likely to be part of the course of the illness or events that are recognized as important by their incorporation as trial endpoints.

8.12.2. **Definition**

In accordance with accepted standards a SAE is defined as an event that is fatal, life-threatening, results in (or may result) in disability that is long-lasting and significant, or results in a birth defect or congenital anomaly.

8.12.3. **Reporting Procedures for Serious Adverse Events**

The trial endpoints, as outlined in the Core Protocol and as specified in DSAs, are designed to measure the vast majority of events that might otherwise constitute an SAE. In particular, SAEs that might be attributable to specific interventions are included as secondary endpoints in each DSA but are recorded only for participants who are enrolled in that domain. If required, additional clarification of issues related to the identification of SAEs
that are relevant to a specific domain will be described in the DSA. Generally, only SAEs that are not trial-end points require reporting. However, any SAE that is considered by the site-investigator to be attributable to a study intervention or study participation should be reported (Section 8.13.4). Where an SAE is not a trial end point it should be reported only where, in the opinion of the site-investigator, the event might reasonably have occurred as consequence of a study intervention or study participation (Section 8.13.4).

Events that meet the definition of an SAE, require reporting in accordance with the criteria outlined above, and occur between trial enrollment but before hospital discharge will be reported to a RCC. These SAEs should be reported to a RCC within 72 hours of trial staff becoming aware of the event, unless otherwise specified in a RSA. The minimum information that will be reported will comprise:

- Unique trial-specific number
- Date(s) of the event
- Nature of the event, including its outcome, and the rationale for attribution to a trial intervention
- Whether treatment was required for the event and, if so, what treatment was administered

8.12.4. Attribution of serious events to study interventions

It is likely that many participants within the trial will experience events that could be attributed to one or more study interventions. However, it will often be difficult to distinguish, in real-time, between events that occur as a consequence of critical illness and treatments that are not specified by the trial, and interventions specified by the trial. Site investigators should exercise caution in attributing events to study interventions. However, the standard that should be applied to determine whether SAEs are attributable to study interventions in this trial is that it is possible, probable, or certain that there is a direct link between a trial intervention and the SAE or the SAE is not considered to be a normal feature of the evolution of critical illness and its treatment.

8.12.5. Attribution of a death to study interventions or study participation

Critically ill patients who will be enrolled in this trial are at high risk of death. The primary endpoint of the trial is mortality and the objective of the trial is to identify differences in the
primary endpoint that can be attributed to treatment allocation which will often include treatments that are believed to be or known to be safe and effective but for which it is not known whether some treatments are more effective than others. Where the trial evaluates interactions that are novel and not part of usual standard care the threshold for considering attribution to the novel experimental intervention should be lower than if an intervention is already in widespread use and its safety profile has already been established.

9. GOVERNANCE AND ETHICAL CONSIDERATIONS

9.1. Management of participating sites and trial coordination

Each region will have a RCC. Each RCC will take primary responsibility for the management of participating sites, data management for those sites, and provide web-based randomization for sites in its region. The processes by which each RCC will provide trial management and coordination is set out in each RSA.

9.2. Ethics and regulatory issues

9.2.1. Guiding principles

The study will be conducted according to the principles of the latest version of the Declaration of Helsinki (version Fortaleza 2013) and in accordance with all relevant local ethical, regulatory, and legal requirements as specified in each RSA.

9.2.2. Ethical issues relevant to this study

Patients who will be eligible for this study are critically ill, and many eligible patients will be receiving sedative medications for comfort, safety and to facilitate standard life saving emergency and ICU procedures. In patients who are not necessarily receiving sedative medications, the presence of critical illness, itself, leads commonly to an altered mental state that will affect the patient’s mental capacity. The presence of these factors may mean that some patients who are eligible for the study may not be able to provide prospective consent for participation. Additionally, many interventions within this trial must be initiated urgently, either because there is an immediate time critical imperative to initiate the
intervention or because the most valid evaluation of the intervention occurs if the trial intervention is initiated at the same time-point as would occur in clinical practice.

The broad approach regarding consent that will be used in this study are as follows:

- Patients who, in the opinion of the treating clinician, are competent to consent will be provided with information about the trial and invited to participate.
- The vast majority of patients who are eligible for the REMAP will not be competent to consent. For such patients, and as permitted by local laws and requirements for ethical approval:
 - For domains in which all interventions available at the participating site are regarded as being part of the spectrum of acceptable standard care by the clinicians at that site, entry to the study is preferred to be via waiver-of-consent or some form of delayed consent. If required by local laws or ethical requirements and alternative to this pathway will be participation in conjunction with the agreement of an authorized representative of the participant.
 - For domains in which at least one intervention available at the participating site is regarded as experimental or not part of the spectrum of acceptable standard care then prospective agreement by an authorized representative will be required. An exception to this principle is recognized when there is a time-imperative need to commence the intervention which would routinely preclude obtaining the prospective agreement by an authorized representative.
 - For domains in which eligibility may develop after initial enrollment in the trial it is permissible to obtain contingent consent from the participant or contingent agreement from an authorized representative, i.e. there is contingent approval to randomize the participant if the participant meets eligibility criteria for a domain subsequently.
 - Where any participant is enrolled without having provided their own consent, the participant’s authorized representative will be informed as soon as appropriate and informed of processes to cease trial participation. If required by local laws or processes for ethical approval, the authorized representative will be asked to provide agreement to on-going participation. In undertaking these trial processes research staff will be cognizant of the need to avoid unnecessary distress or create unnecessary confusion for authorized representatives and all other persons who have an interest in the participant’s welfare.
Where any participant is enrolled without having provided their own consent, the participant should be informed of their enrollment after regaining competency, in accordance with local practice and jurisdictional requirements. Where any participant is enrolled and does not regain competency (due to their death or neurological impairment) the default position, subject to local laws and ethical review processes, will be that the enrolled person will continue to be a participant in the trial.

It should be noted that once RAR is initiated, participants within the REMAP, on average, derive benefit from participation. As a consequence of RAR participants are more likely to be allocated to the interventions within each domain that are more likely to result in better outcomes.

9.2.3. Approvals

The protocol, consent form(s) and participant and/or authorized representative information sheet(s) will be submitted to an appropriate ethical review body at each participating institution and, as required, to any additional regulatory authorities. Written approval to commence the study is required for all relevant ethical and regulatory bodies.

9.3. Protocol modifications

9.3.1. Amendments

A “substantial amendment” is defined as an amendment to one or more of the Core Protocol or DSA, that is likely to affect to a significant degree:

- the safety or physical or mental integrity of the subjects of the trial;
- the scientific value of the trial;
- the conduct or management of the trial;
- the quality or safety of any intervention used in the trial;
- cessation of any intervention or domain for any reason;
- the addition of any new intervention within a domain; or
- the addition of new interventions within a new domain

All substantial amendments to the original approved documents, including all modifications of interventions available within a domain and the addition of interventions within a new
domain will be submitted for approval to all relevant ethical and regulatory review bodies that were required for original approvals.

Where the cessation of any intervention or any domain occurs for any reason, this is an operational issue and randomization to that intervention or domain will no longer be available. Cessation of an intervention or domain, either entirely, or within a prespecified subgroup, will be reported to all relevant regulatory bodies.

9.4. Confidentiality

The principles of confidentiality that will apply to this trial, are that all trial staff will ensure that the confidentiality of all participants information will be maintained and preserved at all times. The participants will be identified only by a unique trial-specific number on all documents and electronic databases that contain any information specific to the participating individual. Each site will maintain a separate file that links each participant’s unique trial-specific number to the participant’s name and other identifying information such as date of birth, address, and other contact information. No other information will be maintained in the file that links the participant unique trial-specific number to participant identifying information.

9.5. Declarations of interest

All trial staff will be required to declare and update all interests that might or might be seen to influence one or both of the conduct of the trial or the interpretation of results. All investigators involved in REMAP-CAP maintain a registry of interests on the REMAP-CAP website. These are updated periodically and publicly accessible on the study website.

9.6. Post-trial care

The trial has no responsibility for the ongoing management or care of participants following the cessation of all trial specified interventions.
9.7. Communication

9.7.1. Reporting

Each participating site will comply with all local reporting requirements, as specified by that site’s institution.

Should the entire trial be terminated, all relevant local ethical and regulatory bodies will be informed within 90 days after the end of the study. The end of the study is defined as the last participant’s last follow-up.

9.7.2. Communication of trial results

Trial results will be communicated by presentation and publication.

9.8. Publication policy

Manuscript(s) and abstract(s) resulting from the data collected during this study will be prepared by the corresponding DSWG. Where results are influenced by interaction between domains, the DSWG for both domains will take responsibility for preparation of manuscripts and abstracts. All manuscripts and abstracts reporting trial results that are prepared by one or more DSWGs must be submitted to and approved by the ITSC before submission.

Site investigators will not publish or present interim or definite results, including but not restricted to oral presentations. The role of site investigators and research coordinators at participating sites will be acknowledged by their names being listed as collaborators. Where required publications will comply with the publication policies of clinical trials groups that have endorsed or supported the study.

9.9. Data access and ownership

9.9.1. Data ownership

All data are owned by the responsible sponsor under the custodianship of the TSC. As the trial is intended to be perpetual, all data will be retained indefinitely.
9.9.2 Access to Data

Direct access will be granted to authorized representatives from ITSC, sponsors, host institution and the regulatory authorities to permit trial-related monitoring, audits and inspections. The trial will comply with all relevant jurisdictional and academic requirements relating to access to data, as apply at the time that the data are generated. Ownership and access to data where a commercial organization is involved in the trial (for example by provision of goods or services that are tested within a domain) will be set out in a contract between trial sponsors and that commercial organization.

The trial will not enter into a contract with a commercial organization unless the contract specifies that:

- There is complete academic independence with regard to the design and conduct of all aspects of the trial including analysis and reporting of trial results
- May agree to provide a pre-publication version of presentations or manuscripts to a commercial organization but that the commercial organization has no authority to prevent or modify presentation or publication
- That all data are owned by the trial and the commercial organization has no authority to access data

9.10 Consent form

Template information and consent forms will be provided to participating sites as an operational document.
10. REFERENCES

forum for acute care trialists - Collaborative H1N1 Adjuvant Treatment pilot trial (CHAT): study protocol and design of a randomized controlled trial. Trials, 12, 70.

Domain-Specific Appendix:

CORTICOSTEROID DOMAIN

REMAP-CAP: Randomized, Embedded, Multifactorial Adaptive Platform trial for Community-Acquired Pneumonia

Corticosteroid Domain-Specific Appendix Version 4.0 dated 21 July 2020
Summary

In this domain of the REMAP-CAP trial, participants who meet platform entry criteria will be randomized to receive one of up to four steroid-use strategies depending on availability and acceptability:

- No corticosteroid including hydrocortisone (no placebo)
- Fixed duration lower dose hydrocortisone (200 mg daily for 7 days)
- Fixed duration higher dose hydrocortisone (400 mg daily for 7 days)
- Shock-dependent hydrocortisone while the patient is in septic shock

At this participating site the following interventions have been selected within this domain:

- [] No corticosteroid including hydrocortisone (no placebo)
- [] Fixed duration lower dose hydrocortisone (200 mg daily for 7 days)
- [] Fixed duration higher dose hydrocortisone (400 mg daily for 7 days)
- [] Shock-dependent hydrocortisone while the patient is in septic shock
This DSA applies to the following states and stratum:

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Pandemic infection suspected or proven (PISOP)</th>
<th>Pandemic infection neither suspected nor proven (PINSNP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core protocol documents</td>
<td>REMAP-CAP Core Protocol + Pandemic Appendix, or REMAP-COVID Core Protocol</td>
<td>REMAP-CAP Core Protocol</td>
</tr>
<tr>
<td>Illness Severity State</td>
<td>Moderate State</td>
<td>Severe State</td>
</tr>
<tr>
<td>Interventions available in this Domain + State</td>
<td>Domain not available</td>
<td>No corticosteroids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed course low dose hydrocortisone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed course higher dose hydrocortisone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shock-dependent hydrocortisone</td>
</tr>
<tr>
<td>Interventions submitted for approval at this site</td>
<td>N/A</td>
<td>No corticosteroids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed course low dose hydrocortisone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed course higher dose hydrocortisone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shock-dependent hydrocortisone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ward</th>
<th>ICU</th>
<th>ICU</th>
<th>ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interventions offered at this site in these locations</th>
<th>Ward</th>
<th>ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- No corticosteroids
- Fixed course low dose hydrocortisone
- Fixed course higher dose hydrocortisone
- Shock-dependent hydrocortisone
REMAP-CAP: Corticosteroid Domain Summary

<table>
<thead>
<tr>
<th>Interventions</th>
<th>This domain is analyzed in two different statistical models.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The interpandemic model includes patients corresponding to the Pandemic Infection Neither Suspected nor Proven (PINSNP) stratum. Within the PINSNP stratum there are four units-of-analysis, specified by the combination of shock and influenza strata status, with borrowing permitted. Analysis and Response Adaptive Randomization are applied by shock and suspected or proven influenza status. Analysis also occurs in the pandemic statistical model, corresponding to the Pandemic Infection Suspected or Proven (PISOP) stratum. The Corticosteroid Domain is available only within the Severe State. In the pandemic statistical model, there are up to two possible units-of-analysis determined by SARS-CoV-2 status, specified as either confirmed or not confirmed, with borrowing permitted. Response Adaptive Randomization will be applied to patients in the PISOP stratum using probabilities derived from either the PISOP stratum or the SARS-CoV-2 confirmed stratum.</td>
</tr>
<tr>
<td></td>
<td>Unit-of-analysis, state, and Strata</td>
</tr>
<tr>
<td></td>
<td>This domain is analyzed in two different statistical models.</td>
</tr>
<tr>
<td></td>
<td>The interpandemic model includes patients corresponding to the Pandemic Infection Neither Suspected nor Proven (PINSNP) stratum. Within the PINSNP stratum there are four units-of-analysis, specified by the combination of shock and influenza strata status, with borrowing permitted. Analysis and Response Adaptive Randomization are applied by shock and suspected or proven influenza status. Analysis also occurs in the pandemic statistical model, corresponding to the Pandemic Infection Suspected or Proven (PISOP) stratum. The Corticosteroid Domain is available only within the Severe State. In the pandemic statistical model, there are up to two possible units-of-analysis determined by SARS-CoV-2 status, specified as either confirmed or not confirmed, with borrowing permitted. Response Adaptive Randomization will be applied to patients in the PISOP stratum using probabilities derived from either the PISOP stratum or the SARS-CoV-2 confirmed stratum.</td>
</tr>
<tr>
<td>Evaluable treatment-by-treatment Interactions</td>
<td>Within the interpandemic model, treatment-treatment interactions will be evaluated between interventions in this domain and interventions in the Influenza Antiviral Domain. Within the pandemic model, treatment-treatment interactions will be evaluated between interventions in this domain and interventions in the COVID-19 Antiviral Domain and the COVID-19 Immune Modulation Domain.</td>
</tr>
<tr>
<td>Nesting</td>
<td>There is one nest, applied only in the pandemic statistical model, comprising the fixed duration lower dose and the fixed duration higher dose interventions.</td>
</tr>
<tr>
<td>Timing of Reveal</td>
<td>Randomization with Immediate Reveal and Initiation</td>
</tr>
<tr>
<td>Inclusions</td>
<td>Inclusion criteria are those specified in the relevant core protocol documents. During the COVID-19 pandemic, the platform-level inclusion criteria are different for patients within the PISOP stratum and for patients within the PINSNP stratum. Patients in either stratum are eligible for this domain.</td>
</tr>
<tr>
<td>Domain-Specific Exclusions</td>
<td>Patients will be excluded from this domain if they have any of the following:</td>
</tr>
<tr>
<td></td>
<td>- Known hypersensitivity to hydrocortisone</td>
</tr>
<tr>
<td></td>
<td>- An indication to prescribe systemic corticosteroids for a reason that is unrelated to the current episode of CAP (or direct complications of CAP), such as chronic corticosteroid use before admission, acute severe asthma, or suspected or proven Pneumocystis jiroveci pneumonia</td>
</tr>
<tr>
<td></td>
<td>- More than 36 hours has elapsed since ICU admission</td>
</tr>
<tr>
<td></td>
<td>- The treating clinician believes that participation in the domain would not be in the best interests of the patient</td>
</tr>
<tr>
<td>Intervention-Specific Exclusions</td>
<td>Nil, not applicable</td>
</tr>
</tbody>
</table>
| Outcome measures | Primary REMAP endpoint as defined in relevant core protocol documents
|------------------|--
| | Secondary REMAP endpoints as defined in relevant core protocol documents
| | Secondary Domain-specific endpoints (during index hospitalization censored 90 days from the date of enrollment):
| | • Serious Adverse Events (SAE) as defined in relevant core protocol documents |
Table of Contents

1. **Abbreviations** ... 308

2. **Protocol Appendix Structure** ... 309

3. **Corticosteroid Domain-Specific Appendix Version** 310

3.1. Version history .. 310

4. **Corticosteroid Domain Governance** 311

4.1. Domain members ... 311

4.2. Contact Details ... 311

5. **Corticosteroid Domain-Specific Working Group Authorization** 312

6. **Background and Rationale** ... 312

6.1. Domain definition .. 312

6.2. Domain-specific background ... 312

6.2.1. Corticosteroids in critical illness 313

6.2.2. Clinical questions regarding corticosteroids in patients with CAP 313

6.2.3. Role of corticosteroids in septic shock secondary to CAP 314

6.2.4. Role of corticosteroids in CAP irrespective of septic shock 316

6.2.5. Role of corticosteroids in CAP secondary to influenza 319

6.2.6. Role of corticosteroids in Acute Respiratory Distress Syndrome 319

6.2.7. Corticosteroids in COVID-19 .. 320

6.2.8. Corticosteroid-associated complications in critical illness 321

6.2.9. Definitively addressing the role of corticosteroids in severe CAP 321

7. **Domain Objectives** ... 322

8. **Trial Design** .. 323

8.1. Population .. 323

8.2. Eligibility criteria .. 324

8.2.1. Domain inclusion criteria ... 324

8.2.2. Domain exclusion criteria .. 324

8.2.3. Intervention exclusion criteria 324

8.3. Interventions ... 325

8.3.1. Corticosteroid interventions .. 325

8.3.2. No corticosteroid intervention 325

8.3.3. Dosing and duration of administration of corticosteroids 325

8.4. Concomitant care ... 327

8.5. Endpoints ... 328

8.5.1. Primary endpoint ... 328
8.5.2. Secondary endpoints ..328

9. TRIAL CONDUCT ... 329

9.1. Domain-specific data collection ..329

9.1.1. Clinical data collection ..329

9.2. Criteria for discontinuation ...329

9.3. Blinding ...329

9.3.1. Blinding ...329

9.3.2. Unblinding ..329

10. STATISTICAL CONSIDERATIONS ... 329

10.1. Domain-specific stopping rules ..329

10.2. Unit-of-analysis and strata ..330

10.3. Timing of revealing of randomization status ..330

10.4. Interactions with interventions in other domains ..331

10.4.1. Interactions specified in the interpandemic model ..331

10.4.2. Interactions specified in the pandemic model ..331

10.5. Nesting of interventions ..332

10.6. Threshold probability for superiority, effectiveness, and inferiority332

10.7. Threshold odds ratio delta for equivalence and futility ..333

10.8. Informative priors ..333

10.9. Post-trial sub-groups ...333

11. ETHICAL CONSIDERATIONS .. 333

11.1. Data Safety and Monitoring Board ...333

11.2. Potential domain-specific adverse events ..334

11.3. Domain-specific consent issues ..334

12. GOVERNANCE ISSUES ... 335

12.1. Funding of domain ...335

12.2. Funding of domain interventions and outcome measures ..335

12.3. Domain-specific declarations of interest ..336

13. REFERENCES ...337

TABLE OF TABLES

Table 1: Selected studies of corticosteroids in sepsis ...315

Table 2: Studies on corticosteroids in CAP (adapted from Prina et al, 2016)318
1. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRENAL</td>
<td>ADjunctive coRticosteroid trEatment iN criticAlly iLL Patients With Septic Shock Study</td>
</tr>
<tr>
<td>APROCCHSS</td>
<td>Activated PROtein C and Corticosteroids for Human Septic Shock</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute Respiratory Distress Syndrome</td>
</tr>
<tr>
<td>ARDSNet</td>
<td>Acute Respiratory Distress Syndrome Clinical Trial Network</td>
</tr>
<tr>
<td>CAP</td>
<td>Community Acquired Pneumonia</td>
</tr>
<tr>
<td>CORTICUS</td>
<td>The Corticosteroid Therapy of Septic Shock Study</td>
</tr>
<tr>
<td>DSA</td>
<td>Domain-Specific Appendix</td>
</tr>
<tr>
<td>DSWG</td>
<td>Domain-Specific Working Group</td>
</tr>
<tr>
<td>DSMB</td>
<td>Data Safety and Monitoring Board</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamic–Pituitary–Adrenal</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>ISIG</td>
<td>International Statistics Interest Group</td>
</tr>
<tr>
<td>ITSC</td>
<td>International Trial Steering Committee</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>LOS</td>
<td>Length of Stay</td>
</tr>
<tr>
<td>LUNG-SAFE</td>
<td>Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE</td>
</tr>
<tr>
<td>MODS</td>
<td>Multiple Organ Dysfunction Score</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>OFFD</td>
<td>Organ Failure Free Days</td>
</tr>
<tr>
<td>P:F Ratio</td>
<td>Ratio of Partial Pressure of Oxygen in Arterial Blood and Fraction of Inspired Oxygen Concentration</td>
</tr>
<tr>
<td>RAR</td>
<td>Response Adaptive Randomization</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>REMAP</td>
<td>Randomized, Embedded, Multifactorial Adaptive Platform trial</td>
</tr>
<tr>
<td>REMAP-CAP</td>
<td>Randomized, Embedded, Multifactorial, Adaptive Platform trial for Community-Acquired Pneumonia</td>
</tr>
<tr>
<td>RSA</td>
<td>Region-Specific Appendix</td>
</tr>
<tr>
<td>SAE</td>
<td>Serious Adverse Event</td>
</tr>
<tr>
<td>VFD</td>
<td>Ventilator Free Days</td>
</tr>
</tbody>
</table>
2. PROTOCOL APPENDIX STRUCTURE

The structure of this protocol is different to that used for conventional trials because this trial is highly adaptive and the description of these adaptations is better understood and specified using a ‘modular’ protocol design. While, all adaptations are pre-specified, the structure of the protocol is designed to allow the trial to evolve over time, for example by the introduction of new domains or interventions or both (see glossary, Section 1.2 Core Protocol for definitions of these terms) and commencement of the trial in new geographical regions.

The protocol has multiple modules, in brief, comprising a Core Protocol (overview and design features of the study), a Statistical Analysis Appendix (details of the current statistical analysis plan and models) and Simulations Appendix (details of the current simulations of the REMAP), multiple Domain-Specific Appendices (DSA) (detailing all interventions currently being studied in each domain), and multiple Region-Specific Appendices (RSA) (detailing regional management and governance).

The Core Protocol contains all information that is generic to the trial, irrespective of the regional location in which the trial is conducted and the domains or interventions that are being tested. The Core Protocol may be amended but it is anticipated that such amendments will be infrequent.

The Core Protocol does not contain information about the intervention(s), within each domain, because one of the trial adaptations is that domains and interventions will change over time. Information about interventions, within each domain, is covered in a DSA. These Appendices are anticipated to change over time, with removal and addition of options within an existing domain, at one level, and removal and addition of entire domains, at another level. Each modification to a DSA will be subject of a separate ethics application for approval.

The Core Protocol does not contain detailed information about the statistical analysis or simulations, because the analysis model will change overtime in accordance with the domain and intervention trial adaptations but this information is contained in the Statistical Analysis and Simulations Appendices. These Appendices are anticipated to change over time.
time, as trial adaptations occur. Each modification will be subject to approval from the International Trial Steering Committee (ITSC) in conjunction with advice from the International Statistics Interest Group (ISIG) and the Data Safety and Monitoring Board (DSMB).

The Core Protocol also does not contain information that is specific to a particular region in which the trial is conducted, as the locations that participate in the trial are also anticipated to increase over time. Information that is specific to each region that conducts the trial is contained within a RSA. This includes information related to local management, governance, and ethical and regulatory aspects. It is planned that, within each region, only that region’s RSA, and any subsequent modifications, will be submitted for ethical review in that region.

The current version of the relevant Core Protocol ((either REMAP-CAP Core Protocol +/- Pandemic Appendix or REMAP-COVID Core Protocol), DSAs, RSAs and the Statistical Analysis Appendix is listed in the Protocol Summary and on the study website (www.remapcap.org).

3. CORTICOSTEROID DOMAIN-SPECIFIC APPENDIX VERSION

The version of the Corticosteroid Domain-Specific Appendix is in this document’s header and on the cover page.

3.1. Version history

Version 1.0 Approved by the Corticosteroid Domain-Specific Working Group (DSWG) on 19 November 2016
Version 1.1: Approved by the Corticosteroid DSWG on 30 March 2017
Version 2.0 Approved by the Corticosteroid DSWG on 12 December 2017
Version 3.0 Approved by the Corticosteroid DSWG on 12 July 2019
Version 3.1: Approved by the Corticosteroid DSWG on 20 April 2020
Version 4.0: Approved by the Corticosteroid DSWG on 21 July 2020
4. CORTICOSTEROID DOMAIN GOVERNANCE

4.1. Domain members

Chair:

Prof. Derek Angus

Members:

Ms. Wilma van Bentum-Puijk
Dr. Lennie Derde
Prof. Anthony Gordon
Dr. Sebastiaan Hullegie
A/Prof. Peter Kruger
Dr. Ed Litton
Prof. John Marshall
Dr. Colin McArthur
Dr. Srinivas Murthy
Prof. Alistair Nichol
Prof. Bala Venkatesh
Prof. Steve Webb

4.2. Contact Details

Chair:

Professor Derek Angus
Department of Critical Care Medicine, University of Pittsburgh
614 Scaife Hall
3550 Terrace Street
Pittsburgh, PA 15261
UNITED STATES OF AMERICA
Phone +412 647 6965
5. CORTICOSTEROID DOMAIN-SPECIFIC WORKING GROUP AUTHORIZATION

The Corticosteroid Domain-Specific Working Group (DSWG) have read the appendix and authorize it as the official Corticosteroid Domain-Specific Appendix for the study entitled REMAP-CAP. Signed on behalf of the committee,

Chair

Date 21 July 2020

Derek Angus

6. BACKGROUND AND RATIONALE

6.1. Domain definition

This is a domain within the REMAP-CAP platform to test the effectiveness of systemic corticosteroids in patients with severe community-acquired pneumonia (CAP) or patients with acute illness due to suspected or proven COVID-19 (or both).

6.2. Domain-specific background

There is significant uncertainty regarding the use of corticosteroids in patients with CAP who are treated in an ICU. This uncertainty applies to both patients with and without septic shock secondary to CAP. The existing evidence is derived from trials that enrolled overlapping populations. Some trials enrolled patients with septic shock, many of whom had CAP as the source of sepsis, and other enrolled patients with severe CAP, but only a proportion of these patients had septic shock. These trials have largely utilized hydrocortisone as the corticosteroid but have employed a range of doses and delivery strategies (infusion versus intermittent dosing).

Several studies and meta-analyses of randomized controlled trials (RCTs) have indicated that benefit may exist. (MacDonald, 2018) However, existing evidence is not sufficient to provide
guidance to clinicians that is definitive. If there is a benefit, there is limited evidence to suggest that benefit is more likely in patients who are more severely ill. (Annane et al., 2018, Venkatesh et al., 2018) It is also recognized that corticosteroids have a range of potentially adverse effects. Clinicians remain uncertain about the role of corticosteroid treatment in patients with severe CAP. This uncertainty necessitates the conduct of a large pragmatic study to address this question and provide definitive guidance to clinicians.

6.2.1. Corticosteroids in critical illness

In health, endogenous corticosteroids production is regulated by the hypothalamic–pituitary–adrenal (HPA) axis. The HPA axis is central to maintaining homeostasis in the face of exogenous stress. Infectious disease is a common source of exogenous stress that is encountered by humans. As part of an integrated response to infection the host produces additional (above normal homeostasis) corticosteroids. It is speculated that this occurs to calibrate the innate and acquired host response to infection so as to protect the host organism from an excessive immune response, which can damage host tissues. Corticosteroids are immunomodulatory hormones that can stimulate, as well as suppress, immune function depending on the type of immune response, the immune compartment, and the cell type involved. (Silverman et al., 2005, Prina et al., 2016) Exogenously administered corticosteroid drugs (e.g. hydrocortisone) elucidate effects similar to endogenously produced cortisol on the host immune response. Furthermore, critically ill patients may benefit from corticosteroid administration due to the presence of relative adrenal insufficiency or inadequate adrenal function in some cases of severe CAP. (Maxime et al., 2009)

6.2.2. Clinical questions regarding corticosteroids in patients with CAP

There are several interrelated and overlapping clinical questions regarding the role of corticosteroids in patients with severe CAP. The first of these is whether patients who have septic shock as a complication of severe CAP benefit from corticosteroids. The second is whether patients with severe CAP who do not have septic shock benefit from corticosteroids. The third is whether patients with severe CAP due to influenza respond differently to corticosteroids. Lastly, there is uncertainty about the role of corticosteroids in patients who develop Acute Respiratory Distress Syndrome (ARDS) secondary to severe CAP.
6.2.3. Role of corticosteroids in septic shock secondary to CAP

The studies investigating corticosteroids that enrolled patients with septic shock (or sepsis without shock) included patients with a range of different sites of primary infection. In most trials, around half of enrolled patients had CAP. The results of these studies are varied, and this is reflected in international guidelines.

The 2013 iteration of the Surviving Sepsis Campaign Guidelines suggests that the administration of intravenous (IV) hydrocortisone should be avoided if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability, but that hydrocortisone should be administered if hemodynamic stability cannot be achieved. (Dellinger et al., 2013) This recommendation is graded as a weak recommendation based on low quality evidence. There are two major trials that influenced this recommendation. In a study by Annane et al, hydrocortisone improved the duration of survival (within the first 28 days) but not the number of patients who survived; and resulted in more rapid reversal of septic shock in the (non-stratified) sub-group of patients with relative adrenal insufficiency. (Annane et al., 2002) In the CORTICUS study, septic shock was also reversed more rapidly but there was no difference in mortality although this result may have been influenced by inclusion of patients at lower risk of death. (Sprung et al., 2008) A more recent Cochrane meta-analysis suggests that corticosteroid treatment reduces mortality among patients with sepsis, but the quality of evidence was rated as low because of imprecision and inconsistency of results across trials, as well as the inclusion of trials with different study populations and the use of different doses and duration of treatment. (Annane et al., 2015) The recommendation in the current, 2016 International Surviving Sepsis Campaign Guidelines is not changed from the 2013 recommendation. (Rhodes et al., 2017)

Since the publication of the Cochrane meta-analysis and the 2016 Guidelines, two additional trials have been published, but have not provided sufficient clarification. A RCT of hydrocortisone in 3,800 patients with septic shock (ADRENAL) showed no reduction in 90-day mortality. (Venkatesh et al., 2018) In this trial, duration of treatment was 7 days or until ICU discharge, whichever occurred first. For patients who still required vasopressor support on day 7, there was evidence of deterioration after steroids were ceased. The other trial, APROCCHSS, investigating hydrocortisone-plus-fludrocortisone in patients with septic shock,
reported lower 90-day mortality in the intervention group (RR 0.88, 95% CI 0.78-0.99). (Annane et al., 2018)

These trials (Table 1) have not resulted in changes to international guidelines. As a consequence of this uncertainty, there is substantial variation in clinical practice. (Annane et al., 2002, Bollaert et al., 1998, Briegel et al., 1999, MacDonald, 2018)

Table 4: Selected studies of corticosteroids in sepsis

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design, population and intervention</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annane et al. (2015)</td>
<td>Meta-analysis of RCTs of corticosteroids in adult patients with severe sepsis or septic shock</td>
<td>No overall effect on mortality at day 28, ICU discharge or hospital discharge. Reversal of shock occurs more rapidly with corticosteroids. Lower mortality at day 28 for hydrocortisone dose ≤ 300 mg per day for at least 5 days</td>
</tr>
<tr>
<td>Venkatesh et al. (2018)</td>
<td>Multicenter RCT (n=3800) in ventilated patients with septic shock of hydrocortisone (200 mg per day via continuous infusion) for 7 days versus placebo</td>
<td>No difference in mortality at day 90, but faster reversal of shock and reduced duration of mechanical ventilation with corticosteroids</td>
</tr>
<tr>
<td>Annane et al. (2018)</td>
<td>Multicenter RCT (n=1241) in patients with definite or probable septic shock of hydrocortisone (50 mg every 6 hours and fludrocortisone 50 μg enterally daily) for 7 days versus placebo</td>
<td>Reduced mortality at day 90, with more vasopressor- and organ-failure free days</td>
</tr>
</tbody>
</table>

In both ADRENAL and APROCCHSS hydrocortisone was administered for a maximum of 7 days and ceased even if the patient remained in shock. There is anecdotal evidence that many clinicians, who do choose to administer hydrocortisone to patients with septic shock do not administer for a fixed duration (i.e., 7 days) but will administer hydrocortisone for a shorter or longer duration, corresponding to the duration of shock (as determined by vasopressor administration). This strategy has not been evaluated in randomized clinical trials.
The role of corticosteroids in patients with sepsis but not septic shock is also uncertain, with a recent study reporting that corticosteroids were not effective in preventing the development of shock. (Keh et al., 2016) This raises the possibility that the effect of corticosteroids in patients with sepsis may be different depending on the presence of absence of shock at the time of enrollment.

Overall, there is legitimate uncertainty regarding whether corticosteroids are beneficial in patients with septic shock secondary to CAP and, if so whether there are differences in benefit from administration of a fixed-course compared with a duration that is variable corresponding to the duration of septic shock.

6.2.4. Role of corticosteroids in CAP irrespective of septic shock

The clinical manifestations of pneumonia are a product of the interaction between an infective pathogen and the local and systemic inflammatory responses of the host. A more pronounced and aggressive inflammatory response has been shown in several studies to be associated with treatment failure and increased rates of mortality. (Antunes et al., 2002) In support of this hypothesis that an over-active immune response is deleterious, higher levels of pro-inflammatory cytokines and chemokines (i.e. IL-6 and IL-8) have been detected in patients with severe CAP and associated with increased rates of mortality. (Antunes et al., 2002) This raises the possibility of a beneficial effect of dampening of this ‘abnormal’ immune response with corticosteroids, irrespective of the presence of septic shock.

A number of trials have evaluated the effect of administration of corticosteroids in patients with severe CAP. These studies have been reviewed by Prina and colleagues (2016), and are summarized in Table 2 (modified from Prina et al., 2016). A 2011 Cochrane meta-analysis by Chen et al. (6 RCTs, n=437) suggested that corticosteroid therapy increased the speed of resolution of symptoms and shortened the time-interval to achieve clinical stability but did not demonstrate any effect to reduce mortality. (Chen et al., 2011) A more recent meta-analysis by Nie et al. (9 RCTs, n=1001) showed that administration of corticosteroids did not result in a demonstrable decrease in mortality, across all studies, but a beneficial effect on mortality may be present among the sub-group of patients with severe CAP when patients received more than 5 days of corticosteroid treatment. (Nie et al., 2012) A 2016 meta-
analysis by Wan et al. (9 RCTs, n=1,667 and six cohort studies, n=4,095) of adult CAP were analyzed and the authors reported that treatment with corticosteroids is safe and may reduce the risk of ARDS, and shorten the duration of disease. (Wan et al., 2016) These meta-analyses included heterogeneous populations of CAP (mild, moderate and severe CAP) and heterogeneous interventions (low to very high dose of steroids). Another meta-analysis by Cheng et al. (4 RCTs, n=264), which included only patients with severe CAP concluded that, although corticosteroid therapy may reduce mortality for adult patients with severe CAP, the results should be interpreted with caution due to the instability of the pooled estimates. (Cheng et al., 2014) The authors concluded that reliable treatment recommendations could only be produced if additional multicenter studies with sufficient statistical power were conducted. (Cheng et al., 2014)

Two recent relatively large high quality multicenter RCTs have been published regarding the use of corticosteroids in CAP that were not included in the meta-analyses of patients with CAP. Blum et al. conducted a multicenter, double-blind, randomized, placebo-controlled trial (n=785) of patients with CAP who were randomized to receive either prednisone (50 mg, oral) or placebo for 7 days. The trial reported that corticosteroids reduced the time to reach clinical stability and that hyperglycemia was more common in the corticosteroid group but that the mortality rate was not different between the two groups. (Blum et al., 2015) In the second study, by Torres et al, 2015, a multicenter severe CAP RCT (n=120), participants were randomized to receive either corticosteroids (methylprednisolone at a dose of 0.5mg/kilogram (kg) every 12 hours for 5 days) or not. Treatment with corticosteroids reduced treatment failure in comparison with the placebo group, but not hospital mortality. (Torres et al., 2015)

As highlighted in Table 2, the aggregate conclusion from these studies is that there is reasonable evidence to indicate that use of corticosteroids in CAP may result in the following benefits: reduced hospital length of stay (LOS), reduced time to clinical stability, and prevention of ARDS. However, none of these are patient-centered end-points and, as yet, there is no definitive answer regarding the effect of corticosteroids on mortality. This, combined with the huge heterogeneity in current clinical practice indicating clinical equipoise exists, makes now the time to conduct such a large adequately powered study examining patient centered outcomes.
Table 5: Studies on corticosteroids in CAP (adapted from Prina et al, 2016)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study design, population and intervention</th>
<th>Main results (effect of corticosteroids)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confalonieri et al. (2005)</td>
<td>Multicenter RCT (n=46), severe CAP Hydrocortisone (200 mg bolus + infusion (10 mg/hour) for 7 days) versus placebo</td>
<td>Increased PaO2/FiO2, higher chest radiograph score, lower CRP, delayed septic shock, reduced hospital LOS and mortality</td>
</tr>
<tr>
<td>Garcia-Vidal et al. (2007)</td>
<td>Retrospective observational study patients with severe CAP, systemic steroids</td>
<td>Reduction in mortality</td>
</tr>
<tr>
<td>Snijders et al. (2010)</td>
<td>Single center RCT (n=230), CAP Prednisolone (40mg daily for 7 days) versus placebo</td>
<td>Clinical cure at day 7 unchanged</td>
</tr>
<tr>
<td>Meijvis et al. (2011)</td>
<td>Bicenter RCT (n=304), CAP Dexamethasone (5 mg daily for 4 days) versus placebo</td>
<td>Reduced hospital LOS</td>
</tr>
<tr>
<td>Chen et al. (2011)</td>
<td>Meta-analysis (6 RCTs, n=437), CAP</td>
<td>Faster resolution of symptoms Faster clinical stability Lower rate of relapse</td>
</tr>
<tr>
<td>Nie et al. (2012)</td>
<td>Meta-analysis (9 RCTs, n=1001), CAP</td>
<td>No change in mortality overall Reduced mortality in severe CAP</td>
</tr>
<tr>
<td>Shafiq et al. (2013)</td>
<td>Meta-analysis (8 RCTs, n=1119), CAP</td>
<td>Reduced hospital LOS, No change in mortality</td>
</tr>
<tr>
<td>Cheng et al. (2014)</td>
<td>Meta-analysis (4 RCTs, n=264), severe CAP</td>
<td>Reduced hospital LOS and mortality</td>
</tr>
<tr>
<td>Torres et al. (2015)</td>
<td>Multicenter RCT (n=120), CAP Methylprednisolone (0.5 mg/ kg 12 hourly for 5 days) versus placebo</td>
<td>Less treatment failure, No difference for in-hospital mortality</td>
</tr>
<tr>
<td>Blum et al. (2015)</td>
<td>Multicenter RCT (n=785), CAP Prednisolone (50mg daily for 7 days) versus placebo</td>
<td>Reduced time to clinical stability</td>
</tr>
<tr>
<td>Siemieniuk et al. (2015)</td>
<td>Meta-analysis (12 RCTs, n=1974), CAP</td>
<td>Reduced all-cause mortality, mechanical ventilation and ARDS, reduced time to clinical stability, shorter duration of hospitalization</td>
</tr>
<tr>
<td>Wan et al. (2016)</td>
<td>Meta-analysis (9 RCTs, n=1667)</td>
<td>No effect on mortality in CAP and Severe CAP, less ARDS</td>
</tr>
</tbody>
</table>
6.2.5. Role of corticosteroids in CAP secondary to influenza

The role of corticosteroids in patients with CAP caused by or occurring in association with influenza infection has been a longstanding controversy. Existing evidence is derived predominantly from observational studies. During the 2009 H1N1 influenza pandemic, among patients admitted to an ICU, approximately one third of patients received corticosteroids (Falagas et al., 2010) as either a primary therapy or as a rescue therapy for patients with severe ARDS. (Kumar et al., 2009, Dominguez-Cherit et al., 2009) This widespread use occurred despite the absence of any evidence from RCTs regarding the effectiveness of corticosteroids in CAP secondary to influenza. A systematic review and meta-analysis (nine cohort studies, n = 1405, and 14 case-control studies, n = 4700) and a recent secondary analysis of a Spanish cohort study, using propensity matching, showed increased mortality with corticosteroid treatment in influenza H1N1 infection. (Zhang et al., 2015, Moreno et al., 2018) However, it is likely that severity of illness will be a confounding factor in these studies and commonly, in studies enrolling patients who are critically ill, adjustment of confounding may be inadequate. As such, the role of corticosteroids in patients with severe CAP secondary to influenza remains uncertain and both beneficial or harmful effects are possible.

6.2.6. Role of corticosteroids in Acute Respiratory Distress Syndrome

ARDS is common in the critically ill and severe CAP is a common primary etiological factor for its development. Several studies have evaluated the effects of corticosteroids in patients with ARDS including patients with severe CAP. Meduri and colleagues conducted a small (n=24) double blind placebo controlled RCT where patients with severe ARDS who failed to improve by day 7 of respiratory failure were randomized to receive methylprednisolone versus placebo. (Meduri et al., 1998) This study demonstrated that corticosteroid treatment reduced ICU mortality, improved oxygenation and reduced the Multiple Organ Dysfunction Score (MODS). (Meduri et al., 1998), The sample size of this study was small and it is also important to note that there were marked differences in baseline characteristics between groups. (Meduri et al., 1998) A subsequent Acute Respiratory Distress Syndrome Clinical Trial Network (ARDSNet) study randomized (n=180) patients with late ARDS (day 7 to 28) to
receive methylprednisolone or placebo. This study demonstrated no difference in 60-day mortality but an increased death rate in those commenced on steroids after 2 weeks. (Steinberg et al., 2006) There was no increase in nosocomial infections but a trend towards increased neuromyopathy and an increased number of ventilator-free days (VFDs), ICU-free days and shock-free days in the first 28 days after treatment. (Steinberg et al., 2006). A recent single center randomized controlled trial (n=197) study of severe sepsis induced ARDS demonstrated that patients randomized to receive hydrocortisone (50mg, IV 6hourly) was associated with significantly improved pulmonary physiology (partial pressure of oxygen in arterial blood and fraction of inspired oxygen concentration ratio (P:F ratio), lung injury score) but had no survival benefit. (Tongyoo et al., 2016)

These findings have variably been interpreted to mean either “current evidence does not support the efficacy of steroids in ARDS” (Agarwal et al., 2007) or “prolonged glucocorticoid treatment substantially and significantly improves meaningful patient-centered outcome variables and has a distinct survival benefit”. (Meduri et al., 2007) Reflecting this apparent controversy the recent LUNG-SAFE study reported low levels of usage of corticosteroid in ARDS globally. (Bellani et al., 2016) It is clear that there is uncertainty if patients with severe CAP who develop ARDS should receive corticosteroids.

6.2.7. Corticosteroids in COVID-19

Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First identified in Wuhan, China in December 2019, there is a wide spectrum of symptoms ranging from mild asymptomatic disease to ARDS. The Surviving Sepsis Campaign COVID-19 guidelines recommended against the use of corticosteroids in the absence of ARDS (weak recommendation, low quality evidence), while suggesting corticosteroids may benefit in severe COVID-19 with ARDS (weak recommendation, low quality evidence) (Alhazzani et al., 2020). Further guidance from the World Health Organization does not recommend routine corticosteroid treatment, and that low to moderate corticosteroid doses for COVID-19 should only occur in the context of a clinical trial (World Health Organization, 2020). Given the past efficacy and potential harms of corticosteroids in pneumonia from other causes, there is an urgent need to determine the safety and effectiveness of corticosteroids for the treatment of COVID-19,
as called for in the *Lancet* (Russell et al., 2020). At this time, it is not known the appropriate
dose for corticosteroids in severe disease due to COVID-19 or the optimal agent to be used,
with a wide array of strategies in current practice. Clinical variation across regions is
substantial, with choice of agent of hydrocortisone, methylprednisolone or dexamethasone
all being used across regions for COVID-19 (Fadel et al, 2020; Isodori et al., 2020;
recoverytrial.net).

The complications associated with the systemic use of corticosteroids treatment have been
well described. The duration of administration of corticosteroids in patients with severe CAP
is short (up-to a week) and, as a consequence, long-term complications of corticosteroid
administration, such as diabetes mellitus, weight gain, and osteoporosis are not considered
to be likely. However, risks associated with the short-term use in patients with severe CAP
include in increased risk of nosocomial infection (due to the immunosuppressive effect of
corticosteroids), hyperglycemia (which can be treated with insulin), and myopathy, which
may lead to prolongation of the period of mechanical ventilation and weakness during the
recovery phase after critical illness. It remains uncertain, in critically ill CAP patients, what is
the overall effect of these potential complications on patient-centered outcomes, including
survival.

6.2.9. Definitively addressing the role of corticosteroids in severe CAP.

As outlined above, despite RCTs and meta-analyses, more studies are needed to clarify the
effect of corticosteroids on mortality. The most important clinical questions are:

- For patients with CAP who develop septic shock, does administration of hydrocortisone
 affect mortality and, if so, does duration of therapy influence this effect?
- For patients with CAP but who do not develop septic shock does administration of
 hydrocortisone affect mortality?
- For patients with influenza infection and CAP does hydrocortisone affect mortality?
- For patients with COVID-19 does corticosteroid strategy affect outcome?
7. DOMAIN OBJECTIVES

The objective of this domain is to determine the effectiveness of different strategies of corticosteroid utilization in the treatment of severe CAP for patients who are eligible for the platform. We hypothesize that the probability of the occurrence of the primary endpoint specified in the relevant core protocol documents will differ based on the allocation to different corticosteroid strategies. The following interventions will be available:

- No corticosteroid (hydrocortisone is not prescribed; no other corticosteroid is permitted; no administration of a placebo)
- Fixed duration lower dose hydrocortisone (IV hydrocortisone 50mg every 6 hours for 7 days)
- Fixed duration higher dose hydrocortisone (IV hydrocortisone 100 mg every 6 hours for 7 days), only in the PISOP stratum.
- Shock-dependent duration hydrocortisone (IV hydrocortisone 50mg every 6 hours while in septic shock)

The following hypotheses apply to patients enrolled in the interpandemic model (i.e. PINSNP patients):

We hypothesize that the treatment effect of different corticosteroid strategies is different depending on the presence or absence of shock at the time of enrollment (strata-by-intervention interaction).

We hypothesize that the treatment effect of different corticosteroid strategies is different depending on the presence or absence of influenza infection at the time of enrollment (strata-by-intervention interaction).

We hypothesize that the treatment effect of different corticosteroid strategies is different depending on allocation status in the Influenza Antiviral Domain. This is a treatment-by-treatment interaction between the interventions in the Corticosteroid Domain and the influenza Antiviral Domain.

The analytic structure of this domain enables several questions to be addressed. First, is the effect of corticosteroids for CAP general to all of CAP, or different in the subset with shock?
Second, is the effect of corticosteroids for CAP general to all of CAP, or different in the subset with influenza. Third, is the effect of corticosteroids different when titrated to the period where the patient is clinically in septic shock, rather than by administering a fixed one-week course?

The following hypotheses apply to patients enrolled in the pandemic model (i.e. PISOP patients):

We hypothesize that, in patients with suspected or proven pandemic infection, the treatment effect of different corticosteroid strategies is different depending on whether SARS-CoV-2 infection is confirmed to be present or absent.

We hypothesize that the treatment effect of different corticosteroid strategies is different depending on allocation status in the COVID-19 Antiviral Domain. This is a treatment-by-treatment interaction between the interventions in the Corticosteroid Domain and the COVID-19 Antiviral Domain.

We hypothesize that the treatment effect of different corticosteroid strategies is different depending on allocation status in the COVID-19 Immune Modulation Domain. This is a treatment-by-treatment interaction between the interventions in the Corticosteroid Domain and the COVID-19 Immune Modulation Domain.

8. TRIAL DESIGN

This domain will be conducted as part of a REMAP-CAP trial. Treatment allocation will be adaptive, as described in the core protocol documents.

8.1. Population

The REMAP enrolls patients with severe CAP or patients admitted to hospital with acute illness due to suspected or proven pandemic infection who are in the Severe State (see either the REMAP-CAP Core Protocol +/- Pandemic Appendix or the REMAP-COVID Core Protocol).
8.2. Eligibility criteria

Patients are eligible for this domain if they meet all of the platform-level inclusion and none of the platform-level exclusion criteria as specified in either the REMAP-CAP Core Protocol +/- Pandemic Appendix or the REMAP-COVID Core Protocol. It is noted that during the COVID-19 pandemic, that platform-level inclusion criteria are different for patients with pandemic infection suspected or proven (PISOP stratum) and for patients in whom pandemic infection is neither suspected nor proven (PINSNP). Patients in either stratum are eligible for this domain. Patients otherwise eligible for the REMAP may have conditions that exclude them from the Corticosteroid Domain.

This domain is available for patients who have acute illness due to suspected or proven pandemic infection in only the Severe State.

8.2.1. Domain inclusion criteria

Nil.

8.2.2. Domain exclusion criteria

Patients will be excluded from this domain if they have any of the following:

- Known hypersensitivity to hydrocortisone
- Intention to prescribe systemic corticosteroids for a reason that is unrelated to the current episode of CAP (or direct complications of CAP), such as chronic corticosteroid use before admission, acute severe asthma, or suspected or proven *Pneumocystis jiroveci* pneumonia
- More than 36 hours have elapsed since ICU admission (noting that this may be operationalized as more than 24 hours has elapsed since commencement of sustained organ failure support)
- Patient has been randomized in a trial evaluating corticosteroids, where the protocol of that trial requires ongoing administration of study drug
- The treating clinician believes that participation in the domain would not be in the best interests of the patient

8.2.3. Intervention exclusion criteria

Nil.
8.3. Interventions

8.3.1. Corticosteroid interventions

Patients will be randomly assigned to receive one of the following open-label study interventions.

All interventions will be commenced immediately after allocation status is revealed.

- ☐ No corticosteroid including hydrocortisone (no placebo)
- ☐ Fixed duration lower dose hydrocortisone (200 mg daily for 7 days)
- ☐ Fixed duration, higher dose hydrocortisone (400 mg daily for 7 days)
- ☐ Shock-dependent hydrocortisone while the patient is in septic shock

It is required that all sites will participate in the ‘No corticosteroid’ intervention, and each site has the option to opt-in to one or more of the remaining interventions based on local practice and availability of the intervention.

8.3.2. No corticosteroid intervention

Patients allocated to the no corticosteroid intervention are not to receive any systemic corticosteroid, including hydrocortisone, for this episode up until study day 28. There is no administration of placebo. If a patient has been receiving any corticosteroid prior to enrollment, this medication must be ceased. Administration of a systemic corticosteroid, including hydrocortisone, is permitted only for the treatment of new illnesses that develop in the course of a patient’s ICU stay, such as asthma or treatment of an allergic reaction. All use of systemic corticosteroids is recorded and the reason for any administration is documented.

8.3.3. Dosing and duration of administration of corticosteroids

Patients allocated to the fixed-duration lower dose hydrocortisone intervention are to be prescribed a course of hydrocortisone 50mg IV every 6 hours for 7 days only. Administration is to commence immediately after the allocation status is revealed at the time of enrollment.
on study day 1. The 7-day course will be administered until at least the end of study day 7 and no longer than the end of study day 8. From completion of the 7-day course onwards, patients allocated to this intervention are not to receive any systemic corticosteroid, including hydrocortisone, for this episode of CAP, including CAP due to COVID, and its direct complications up until study day 28. Administration of a systemic corticosteroid, including hydrocortisone, after completion of the 7-day course is permitted only for the treatment of new illnesses that develop in the course of a patient’s ICU stay, such as asthma or treatment of an allergic reaction. All use of systemic corticosteroids is recorded and the reason for any administration from study day 9 onwards is documented.

For patients who are discharged from the ICU before the end of the 7-day course of hydrocortisone, it is the responsibility of ICU staff to prescribe hydrocortisone to complete the 7-day course. However, it is not the responsibility of ICU medical or research staff to ensure continuation of the hydrocortisone after discharge from the ICU and it is not a protocol deviation if the course of hydrocortisone is not completed after ICU discharge.

Patients allocated to the shock-dependent duration hydrocortisone intervention, will have hydrocortisone, IV 50 mg every 6 hours, commenced if septic shock develops as a result of the patient’s initial episode of CAP, up until study day 28. Hydrocortisone is to be commenced as soon as septic shock is diagnosed, including immediately after enrollment if septic shock has already been diagnosed. For the purposes of this intervention, septic shock is defined as administration of any vasopressor by continuous infusion where the treating clinician believes that the vasopressor requirement is caused by CAP, including CAP due to COVID, and is not being administered for another reason such as untreated hypovolemia or solely to offset the effects of other ICU interventions such as administration of sedation or mechanical ventilation. The exact dose of vasopressor that defines septic shock is not set by the protocol but is based on the treating clinician’s judgement. The rationale for avoiding an exact dose is because no particular dose signifies ‘shock’ unambiguously. Dosage guidance of vasopressor for initiation of corticosteroids for this intervention is described in a separate operational document.

Hydrocortisone administration is to cease when the clinician believes that septic shock has resolved. Septic shock would always be regarded as having resolved if vasopressor infusion
has not been administered in the preceding 24 hours. A clinician may regard septic shock to have resolved if vasopressor infusion is being administered intermittently or at sufficiently low dose. If, after cessation of hydrocortisone, but during the same ICU admission, there is redevelopment of septic shock due to CAP (as defined above), then hydrocortisone IV 50 mg every 6 hours is to be recommenced until resolution. Hydrocortisone should be ceased prior to ICU discharge.

Patients allocated to the *fixed-duration higher dose hydrocortisone* intervention are to be prescribed a course of hydrocortisone 100mg IV every 6 hours for 7 days only. Administration is to commence immediately after the allocation status is revealed at the time of enrollment on study day 1. The 7-day course will be administered until at least the end of study day 7 and no longer than the end of study day 8. From completion of the 7-day course onwards, patients allocated to this intervention are not to receive any systemic corticosteroid, including hydrocortisone, for this episode of COVID and its direct complications up until study day 28. Administration of a systemic corticosteroid, including hydrocortisone, after completion of the 7-day course is permitted only for the treatment of new illnesses that develop in the course of a patient’s ICU stay, such as asthma or treatment of an allergic reaction. All use of systemic corticosteroids is recorded and the reason for any administration from study day 9 onwards is documented.

For all patients in this domain who remain in ICU after study day 28, data on the administration of corticosteroids is not collected, and administration of corticosteroids after study day 28 is at the discretion of the treating clinician. The interventions in this domain apply to any ICU readmission, up until study day 28, noting that the criteria related to CAP and its direct complications still apply. If septic shock develops during the first or any subsequent ICU admission for a reason other than CAP, such as nosocomial infection, administration of corticosteroids is at the discretion of the treating clinician.

8.4. Concomitant care

New or additional systemic corticosteroids may be administered to any patient who has received an allocation status in this domain for a new clinical indication other than CAP and
its direct complications. All use of systemic corticosteroids is recorded and the reason for any new or additional administration is documented.

The administration of etomidate after enrollment is not permitted and will be considered a protocol deviation.

8.5. Endpoints

8.5.1. Primary endpoint

The primary endpoint for this domain is the REMAP primary outcome as specified in the REMAP-CAP Core Protocol +/- Pandemic Appendix or REMAP-COVID Core Protocol.

8.5.2. Secondary endpoints

All secondary endpoints as specified in the the REMAP-CAP Core Protocol +/- Pandemic Appendix or REMAP-COVID Core Protocol

The domain-specific secondary outcome measures (occurring during the index hospitalization, censored at 90 days after enrollment) will be:

- SAE as defined in the core protocol documents and qualified in this DSA

There are no additional domain-specific secondary outcome measures. It is accepted as being established that treatment with corticosteroids results in increase in blood sugar levels and decreases the duration of vasoactive therapy. It is not an objective of this trial to re-evaluate these questions but determine the aggregate effect of treatment with corticosteroids on mortality. It is also known that treatment with corticosteroids can result in myopathy and muscle weakness but this effect will be evaluated by the aggregate effect of treatment, in conjunction with other factors, on the duration of mechanical ventilation and long-term outcomes, for participants enrolled at sites that are collecting long-term outcomes.
9. **TRIAL CONDUCT**

9.1. **Domain-specific data collection

9.1.1. Clinical data collection

Additional domain-specific data will be collected.

- Administration of systemic corticosteroids
- Administration of etomidate between index hospital admission and randomization, and between randomization and the end of study day 8

Refer to Core Protocol Section 8.9 for data collection fields and processes.

9.2. **Criteria for discontinuation

Refer to relevant core protocol documents for criteria for the discontinuation of participation in the REMAP-CAP trial.

**9.3. **Blinding

9.3.1. Blinding

Hydrocortisone will be administered on an open-label basis.

9.3.2. Unblinding

Not relevant.

10. **STATISTICAL CONSIDERATIONS**

10.1. **Domain-specific stopping rules**

If a Platform Conclusion of equivalence in the primary endpoint is demonstrated the DSMB and the ITSC may consider continuation of randomization if clinically relevant differences in secondary endpoints have not been demonstrated and it is considered plausible that clinically relevant differences in one or more secondary endpoints may be demonstrated. In
all other respects the stopping rules for this domain are those outlined in the relevant core protocol documents.

10.2. Unit-of-analysis and strata

This domain is analyzed in two different statistical models, with PINSNP patients evaluated in the interpandemic model and PISOP patients analyzed in the pandemic model.

Within the PINSNP stratum there are four units-of-analysis, specified by the combination of shock and influenza strata status, with borrowing permitted. Analysis and Response Adaptive Randomization are applied by shock and influenza strata status. Analysis and Response Adaptive Randomization are applied by shock and suspected or proven influenza status. The statistical model will permit borrowing between all stratum as specified in Core Protocol.

It is noted that the definition of shock that is specified in the Core Protocol (presence or absence of inotrope or vasopressor infusion at baseline) determines strata status, and not the definition of septic shock that is used to define administration of hydrocortisone in the shock-dependent duration hydrocortisone intervention.

Within the PISOP stratum analysis also occurs in the pandemic statistical model. Within this stratum there are up to two possible units-of-analysis determined by SARS-CoV-2 status, specified as either confirmed or not confirmed, with borrowing permitted. Response Adaptive Randomization will be applied to patients in the PISOP stratum using probabilities derived from either the PISOP stratum or the SARS-CoV-2 confirmed stratum. Within the PISOP stratum, patients are only eligible for this domain only in the Severe State.

10.3. Timing of revealing of randomization status

The timing of the revealing of allocation status and administration of interventions is specified to be Randomization with Immediate Reveal and Initiation (see relevant core protocol documents). For patients allocated to the shock-dependent duration hydrocortisone intervention, who are not in septic shock at the time of randomization, Immediate Reveal and Initiation is interpreted as intention to commence hydrocortisone if septic shock develops.
10.4. Interactions with interventions in other domains

Interactions are specified separately for the interpandemic model (PINSNP patients) and the pandemic model (PISOP patients)

10.4.1. Interactions specified in the interpandemic model

An \textit{a priori} interaction with the Antibiotic Domains is not considered possible and will not be incorporated into the statistical models used to analyze this domain.

An \textit{a priori} interaction with the Macrolide Duration Domain is not considered possible and will not be incorporated into the statistical models used to analyze this domain.

An \textit{a priori} interaction with the Influenza Antiviral Domain is considered possible and will be incorporated into the statistical models used to analyze this domain.

An \textit{a priori} interaction with the Vitamin C Domain is not considered possible and will not be incorporated into the statistical models used to analyze this domain.

No interaction with any domain that is exclusively in the pandemic model is possible as analysis occurs in a different statistical model.

No interaction is evaluable between the Ventilation Domain and this domain.

10.4.2. Interactions specified in the pandemic model

No interaction with any domain that is exclusively in the interpandemic model is possible as analysis occurs in a different statistical model.

An \textit{a priori} interaction with the COVID-19 Antiviral Domain is considered possible and will be incorporated into the statistical models used to analyze this domain.

An \textit{a priori} interaction with the COVID-19 Immune Modulation Domain is considered possible and will be incorporated into the statistical models used to analyze this domain. An informative prior that is negative is applied to the interaction between interventions in this domain that include administration of hydrocortisone and the interferon-beta-1a.
intervention in the Immune Modulation Domain (see Immune Modulation DSA for all details).

An *a priori* interaction with the therapeutic anticoagulation is not considered possible and will not be incorporated into the statistical models used to analyze this domain.

An *a priori* interaction with the immunoglobulin is not considered possible and will not be incorporated into the statistical models used to analyze this domain.

An *a priori* interaction with the Vitamin C Domain is not considered possible and will not be incorporated into the statistical models used to analyze this domain.

No interaction is evaluable between the Ventilation Domain and this domain.

10.5. Nesting of interventions

Within the pandemic statistical model, there is one nest comprising the lower dose fixed duration hydrocortisone intervention and the higher dose fixed duration hydrocortisone intervention. The rationale for this is that the treatment effect of different doses of steroids is likely to be more similar than no steroids.

Within the interpandemic statistical model interventions in this domain will be analyzed without application of nesting. This is because the *shock-dependent duration hydrocortisone* intervention will be more like the *fixed-duration hydrocortisone* intervention in patients who develop septic shock and more like the *no corticosteroid* intervention in patients who do not develop septic shock (i.e. no hydrocortisone is administered). This divergence in potential similarity cannot be accommodated within the statistical model to allow nesting. For reasons of participant safety and relevance to public health, the DSMB are empowered to request a secondary model to be performed which does allow nesting, if the DSMB believes that it is appropriate to do so.

10.6. Threshold probability for superiority, effectiveness, and inferiority

In the interpandemic model, superiority and inferiority are evaluated using the threshold probabilities specified in the Core Protocol.
In the pandemic model, superiority, effectiveness, and inferiority are evaluated using the threshold probabilities specified in the Pandemic Appendix and the REMAP-COVID Core Protocol.

10.7. **Threshold odds ratio delta for equivalence and futility**

In the interpandemic model, the threshold odds ratio for equivalence in this domain is that specified in the relevant core protocol documents.

In the pandemic model, the Platform Conclusion of equivalence will not be evaluated in this domain. The same odds ratio deltas as specified in the relevant core protocol documents for equivalence will be used for futility. This will be applied in a one side analysis for futility of active corticosteroid interventions.

10.8. **Informative priors**

As noted in the interaction section, an informative prior is set for interaction between the interferon-beta-1a intervention in the Immune Modulation Domain (see Immune Modulation DSA for all details).

10.9. **Post-trial sub-groups**

Domain-specific post-hoc sub-groups will be used in analysis following the conclusion of one or more interventions within the domain. The *a priori* patient sub-groups of interest are:

- All other potentially evaluable treatment-by-treatment interactions with other domains

11. **ETHICAL CONSIDERATIONS**

11.1. **Data Safety and Monitoring Board**

The DSMB should be aware that the superiority, efficacy, inferiority, futility, or equivalence of different interventions with respect to the primary endpoint are possible, and if equivalence is demonstrated, determination of the optimal intervention may be based on secondary endpoints.
The DSMB should take into account the public health, as well as clinical significance, of the analyses of this domain and are empowered to discuss results with relevant international and national public health authorities, with rapid dissemination of results to the larger community being the goal.

Safety secondary outcomes will be reported to the DSMB who are empowered to require additional analyses regarding these outcomes are required.

11.2. Potential domain-specific adverse events

Potential domain-specific harms related to corticosteroid therapy include hyperglycemia, nosocomial infections and ICU-acquired weakness. However, the relevant clinical endpoint related to these potential harms is a reduction in VFDs or organ failure free days (OFFDs), an increased LOS in ICU or hospital, or death. We will collect these endpoints as described in the relevant core protocol documents.

Other SAEs should be reported only where, in the opinion of the site investigator, the event might reasonably have occurred as a consequence of a study intervention or study participation relevant core protocol documents.

11.3. Domain-specific consent issues

As noted in the Background, and endorsed by the World Health Organization, in the absence of evidence of effectiveness of specific treatments for COVID-19, the use of a no treatment control is both appropriate and ethical. For patients who are not competent to consent, either prospective agreement or entry via waiver of consent or some form of deferred consent can be applied, as required by an appropriate ethical review body. During a pandemic, visiting by relatives of affected patients may not be possible. In such situations, alternative methods for confirming consent including electronic and telephone communication, as permitted by an appropriate ethical review body, may be acceptable methods of confirming agreement to participate in this (and other) domains of the platform. Clinicians are directed not to enroll an individual patient if the treating clinician believes that participation in this domain is not in the best interests of the patient.
Hydrocortisone has been used by clinicians for patients with severe CAP for decades. However, there is substantial variation between clinicians within and between countries and hospitals within countries. This variation in practice occurs, predominantly, because the limited high-quality evidence is contradictory. If this domain were not part of this REMAP it is reasonable to presume that some, but far from all, patients at sites that are participating in the REMAP would receive corticosteroid treatment.

Corticosteroids are not contraindicated in women who are pregnant and patients who are pregnant will not be excluded from this domain.

The choice of which the four interventions are available for PISOP patients and the three interventions for PINSNP patients at any site is determined by the participating site. Sites for which standard care is to routinely administer hydrocortisone to patients with septic shock should not participate in the no hydrocortisone intervention. The remaining interventions administer hydrocortisone to patients who have or develop septic shock, but do so for different durations or doses for which may sites will have clinical equipoise.

12. GOVERNANCE ISSUES

12.1. **Funding of domain**

Funding sources for the REMAP-CAP trial are specified in the relevant core protocol documents. This domain has not received any additional domain-specific funding but such funding may be obtained during the life-time of the domain.

12.2. **Funding of domain interventions and outcome measures**

Hydrocortisone will be provided by participating hospitals on the basis that, in the absence of the REMAP, a proportion of patients with severe CAP would otherwise have received corticosteroids. Additionally, hydrocortisone is no longer a medication protected by patent in any country that is participating in the Platform and the cost of hydrocortisone is minimal.
12.3. Domain-specific declarations of interest

All investigators involved in REMAP-CAP maintain a registry of interests on the REMAP-CAP website. These are updated periodically and publicly accessible on the study website.
13. REFERENCES

Protocol Amendment to Corticosteroid Domain-Specific Appendix

Summary of changes

REMAP-CAP: Randomized, Embedded, Multifactorial Adaptive Platform trial for Community-Acquired Pneumonia
TABLE OF CONTENTS

1. CURRENT VERSIONS OF PROTOCOL DOCUMENTS .. 343
 1.1. The current versions of Corticosteroid specific protocol documents:343

2. AMENDMENT 4 .. 343
 2.1. Summary of changes...345
14. CURRENT VERSIONS OF PROTOCOL DOCUMENTS

14.1. The current versions of Corticosteroid specific protocol documents:

- REMAP-CAP Core Protocol Version 3, dated 10 July 2019
- REMAP-CAP Pandemic Appendix to Core Version 2, dated 18 May 2020
- REMAP-COVID Core Protocol Version 1, dated 27 March 2020
- REMAP-CAP Corticosteroid Domain-Specific Appendix Version 4, dated 21 July

15. AMENDMENT 4

The Corticosteroid Domain-Specific Appendix Protocol document underwent an amendment in July 2020. It should be noted that this version was in development at the time that the Corticosteroid Domain was closed for new enrolment in the PISOP stratum. The changes in this DSA were intended solely for patients in the PISOP stratum and, because the domain was closed for new enrolment before completion of the amendment to the DSA, this amendment has not been submitted for approval at any REMAP-CAP location.

The broad objective of this amendment is to make this DSA compatible with the current version of the REMAP-CAP Pandemic Appendix and the REMAP-COVID Core protocol. This includes acknowledgement of the Moderate State, defined as patients with acute illness due to COVID-19 who are not receiving organ support in an intensive care unit, but noting that patients in the Moderate State were not eligible for this domain.

The REMAP-CAP COVID Core Protocol has been created as an alternative core protocol document for submission in some regions. This version of the core protocol removes any information that is not relevant to the COVID-19 pandemic, and integrates this information with the Pandemic Appendix to the Core Protocol into a single document. It is intended that the REMAP-COVID Core Protocol may be used by some regions as an alternative to the REMAP-CAP Core Protocol and the Pandemic Appendix to the Core Protocol. The language in this DSA has been modified to refer to either set of core protocol documents.
It also was intended to replace a version of this DSA that was approved in some locations in conjunction with the REMAP-COVID Core Protocol. This version of the DSA included the addition of a fourth intervention, corresponding to a fixed duration, but higher dose of hydrocortisone.
15.1. Summary of changes

<table>
<thead>
<tr>
<th>Section</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front page and whole document header</td>
<td>REMAP-CAP Corticosteroid Domain-Specific Appendix Version 3 dated 12 July 2019</td>
<td>REMAP-CAP Corticosteroid Domain-Specific Appendix Version 4 dated 21 July 2020</td>
<td>Administrative change</td>
</tr>
</tbody>
</table>
| Summary Page 2 | In this domain of the REMAP-CAP trial, participants with community acquired pneumonia admitted to participating intensive care units will be randomized to receive one of up to three steroid-use strategies depending on availability and acceptability:
• No corticosteroid including hydrocortisone (no placebo)
• Fixed duration hydrocortisone for 7 days
• Shock-dependent hydrocortisone while the patient is in septic shock
At this participating site the following interventions have been selected within this domain:
☐ No corticosteroid including hydrocortisone (no placebo)
☐ Fixed duration hydrocortisone for 7 days | In this domain of the REMAP-CAP trial, participants who meet platform entry criteria will be randomized to receive one of up to four steroid-use strategies depending on availability and acceptability:
• No corticosteroid including hydrocortisone (no placebo)
• Fixed duration lower dose hydrocortisone (200 mg daily for 7 days)
• Fixed duration higher dose hydrocortisone (400 mg daily for 7 days)
• Shock-dependent hydrocortisone while the patient is in septic shock
At this participating site the following interventions have been selected within this domain:
☐ No corticosteroid including hydrocortisone (no placebo) | Text changed to reflect that patients who are not admitted to the ICU may also be eligible. Another intervention was added as practice in some locations was to use higher doses of corticosteroid. |
<table>
<thead>
<tr>
<th>Summary Page 3</th>
<th>Blank</th>
<th>This DSA applies to the following states and stratum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratum</td>
<td>Pandemic infection suspected or proven (PISOP)</td>
<td>Pandemic infection neither suspected nor proven (PINSNP)</td>
</tr>
<tr>
<td>Core protocol documents</td>
<td>REMAP-CAP Core Protocol + Pandemic Appendix, or REMAP-COVID Core Protocol</td>
<td>REMAP-CAP Core Protocol</td>
</tr>
<tr>
<td>Illness Severity State</td>
<td>Moderate State</td>
<td>Severe State</td>
</tr>
<tr>
<td>Interventions available in this Domain + State</td>
<td>Domain not available</td>
<td>No corticosteroids Fixed course low dose hydrocortisone Fixed course higher dose hydrocortisone Shock-dependent hydrocortisone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No corticosteroids Fixed course low dose hydrocortisone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shock-dependent hydrocortisone</td>
</tr>
</tbody>
</table>

Addition of a standard table to outline which statistical model and protocol document relate to this domain. This table also outlines which interventions will be submitted for ethical review in this jurisdiction; and which interventions will be offered to patients in ward and ICU settings by illness severity state.
<table>
<thead>
<tr>
<th>Interventions submitted for approval at this site</th>
<th>Ward</th>
<th>ICU</th>
<th>ICU</th>
<th>ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>No corticosteroids</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Fixed course low dose hydrocortisone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed course higher dose hydrocortisone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-dependent hydrocortisone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed course low dose hydrocortisone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed course higher dose hydrocortisone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-dependent hydrocortisone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary Table Interventions Page 4

- No corticosteroid including hydrocortisone (no placebo)
- Fixed duration hydrocortisone for 7 days
- Shock-dependent hydrocortisone while the patient is in septic shock

- No corticosteroid including hydrocortisone (no placebo)
- Fixed duration lower dose hydrocortisone for 7 days
- Fixed duration higher dose hydrocortisone for 7 days
- Shock-dependent hydrocortisone while the patient is in septic shock

Summary table

There are four units-of-analysis specified by the combination of shock and influenza strata status. This domain is analyzed in two different statistical models.

Addition of illness severity state and administrative update to show changed interventions in the summary table.
| Unit of Analysis, State, and Strata | Analysis and Response Adaptive Randomization are applied by shock and influenza status. | The interpandemic model includes patients corresponding to the Pandemic Infection Neither Suspected nor Proven (PINSNP) stratum. Within the PINSNP stratum there are four units-of-analysis for this domain, specified by the combination of shock and influenza strata status, with borrowing permitted. Analysis and Response Adaptive Randomization are applied by shock and suspected or proven influenza status. Analysis also occurs in the pandemic statistical model, corresponding to the Pandemic Infection Suspected or Proven (PISOP) stratum. The Corticosteroid Domain is available on within the Severe State. In the pandemic statistical model, there are up to two possible units-of-analysis determined by SARS-CoV-2 status, specified as either confirmed or not confirmed, with borrowing permitted. Response Adaptive Randomization will be applied to patients in the PISOP stratum using probabilities derived from either the PISOP stratum or the SARS-CoV-2 confirmed stratum. | clarification of unit-of-analysis |
Summary Table

Evaluation of Treatment-by-Treatment Interactions

- **Within the inter-pandemic model**, treatment-treatment interactions will be evaluated between interventions in this domain and interventions in the Antiviral Domain. No other interactions will be evaluated with any other domain.
- **Within the pandemic model**, treatment-treatment interactions will be evaluated between interventions in this domain and interventions in the Influenza Antiviral Domain, the COVID-19 Antiviral Domain, and the COVID-19 Immune Modulation Domain.

Addition to clarify that interactions that are evaluated are different depending on the patient’s status with respect to pandemic infection strata and that a separate statistical model is used for each stratum.

Nesting

- **None**

<table>
<thead>
<tr>
<th>Nesting</th>
<th>Summary Table</th>
<th>Nesting</th>
</tr>
</thead>
</table>
| None | None | A nest was added because of the similarity between fixed duration lower and fixed duration higher dose of hydrocortisone interventions.

- **There is one nest**, applied only in the pandemic statistical model, comprising the fixed duration lower dose and the fixed duration higher dose interventions.

Domain-Specific Exclusions

Patients will be excluded from this domain if they have any of the following:
- Known hypersensitivity to hydrocortisone
- An indication to prescribe systemic corticosteroids for a reason that is unrelated to the current episode of CAP (or direct complications of CAP), such as chronic corticosteroid use before admission, acute severe

Patients will be excluded from this domain if they have any of the following:
- Known hypersensitivity to hydrocortisone
- An indication to prescribe systemic corticosteroids for a reason that is unrelated to the current episode of CAP (or direct complications of CAP), such as chronic corticosteroid use before admission, acute severe

The time window available for recruitment was increased to match an existing amendment, approved in France, and on basis of feedback from sites that additional

CONFIDENTIAL
asthma, or suspected or proven Pneumocystis jiroveci pneumonia
• More than 24 hours have elapsed since ICU admission
• The treating clinician believes that participation in the domain would not be in the best interests of the patient
• More than 36 hours has elapsed since ICU admission
• Patient has been randomized in a trial evaluating corticosteroids, where the protocol of that trial requires ongoing administration of study drug
• The treating clinician believes that participation in the domain would not be in the best interests of the patient

Summary Table
Outcome measures
Page 4

<table>
<thead>
<tr>
<th>SUMMARIZED</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary REMAP endpoint: all-cause mortality at 90 days. Secondary REMAP endpoints refer to Core Protocol Section 7.6.2</td>
<td>Primary REMAP endpoint: as defined in relevant core protocol documents Secondary REMAP endpoints as defined in relevant core protocol documents</td>
<td>Administrative change to align language to include all protocol documents that are compatible with this DSA</td>
<td></td>
</tr>
<tr>
<td>Secondary Domain-specific endpoints (during index hospitalization censored 90 days from the date of enrollment):</td>
<td>Secondary Domain-specific endpoints (during index hospitalization censored 90 days from the date of enrollment):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Serious Adverse Events (SAE) as defined in CORE protocol</td>
<td>• Serious Adverse Events (SAE) as defined in relevant core protocol documents</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 2
PROTOCOL APPENDIX STRUCTURE
Page 10

The current version of the Core Protocol, DSAs, RSAs and the Statistical Analysis Appendix is listed in the Protocol Summary and on the study website (www.remapcap.org). The current version of the relevant Core Protocol ((either REMAP-CAP Core Protocol +/- Pandemic Appendix or REMAP-COVID Core Protocol), DSAs, RSAs and the Statistical Analysis Appendix is listed in the Administrative change to align language to refer to both sets of protocol
SECTION 3
COVID-19
THERAPEUTIC ANTICOAGULATION
DOMAIN-SPECIFIC APPENDIX VERSION

<table>
<thead>
<tr>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1: Approved by the Corticosteroid Domain-Specific Working Group (DSWG) on 19 November 2016
Version 1.1: Approved by the Corticosteroid DSWG on 30 March 2017
Version 2: Approved by the Corticosteroid DSWG on 12 December 2017
Version 3: Approved by the Corticosteroid DSWG on 12 July 2019</td>
<td>Version 1.0: Approved by the Corticosteroid Domain-Specific Working Group (DSWG) on 19 November 2016
Version 1.1: Approved by the Corticosteroid DSWG on 30 March 2017
Version 2.0: Approved by the Corticosteroid DSWG on 12 December 2017
Version 3.0: Approved by the Corticosteroid DSWG on 12 July 2019
Version 3.1: Approved by the Corticosteroid DSWG on 20 April 2020
Version 4.0: Approved by the Corticosteroid DSWG on 21 July 2020</td>
<td>Administrative changes</td>
</tr>
</tbody>
</table>

SECTION 4
COVID-19 THERAPEUTIC
<table>
<thead>
<tr>
<th>ANTICOAGULATION THERAPY DOMAIN GOVERNANCE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Domain members Page 12</td>
<td>Professor Derek Angus</td>
<td>Prof. Derek Angus</td>
</tr>
<tr>
<td></td>
<td>Ms. Wilma van Bentum-Puijk</td>
<td>Ms. Wilma van Bentum-Puijk</td>
</tr>
<tr>
<td></td>
<td>Dr. Lennie Derde</td>
<td>Dr. Lennie Derde</td>
</tr>
<tr>
<td></td>
<td>Professor Anthony Gordon</td>
<td>Prof. Anthony Gordon</td>
</tr>
<tr>
<td></td>
<td>Dr. Sebastiaan Hullegie</td>
<td>Dr. Sebastiaan Hullegie</td>
</tr>
<tr>
<td></td>
<td>Associate Professor Peter Kruger</td>
<td>A/Prof. Peter Kruger</td>
</tr>
<tr>
<td></td>
<td>Dr. Ed Litton</td>
<td>Dr. Ed Litton</td>
</tr>
<tr>
<td></td>
<td>Professor John Marshall</td>
<td>Prof. John Marshall</td>
</tr>
<tr>
<td></td>
<td>Dr. Colin McArthur</td>
<td>Dr. Colin McArthur</td>
</tr>
<tr>
<td></td>
<td>Dr. Srinivas Murthy</td>
<td>Dr. Srinivas Murthy</td>
</tr>
<tr>
<td></td>
<td>Professor Alistair Nichol</td>
<td>Prof. Alistair Nichol</td>
</tr>
<tr>
<td></td>
<td>Professor Bala Venkatesh</td>
<td>Prof. Bala Venkatesh</td>
</tr>
<tr>
<td></td>
<td>Professor Steve Webb</td>
<td>Prof. Steve Webb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 6 BACKGROUND AND RATIONALE</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Domain definition Page 12</td>
<td>This is a domain within the REMAP-CAP to test the effectiveness of systemic corticosteroids in patients with severe community-acquired pneumonia (CAP) who are admitted to an Intensive Care Unit (ICU).</td>
<td>This is a domain within the REMAP-CAP platform to test the effectiveness of systemic corticosteroids in patients with severe community-acquired pneumonia (CAP) or patients with acute illness due to suspected or proven COVID-19 (or both).</td>
<td>Text changed to reflect that patients who are not admitted to the ICU may also be eligible.</td>
</tr>
<tr>
<td>6.2.7. Corticosteroids in COVID-19</td>
<td>Blank</td>
<td>6.2.7. Corticosteroids in COVID-19</td>
<td>Background updated to include the use of corticosteroids in COVID-19 illness</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First identified in Wuhan, China in December 2019, there is a wide spectrum of symptoms ranging from mild asymptomatic disease to ARDS. The Surviving Sepsis Campaign COVID-19 guidelines recommended against the use of corticosteroids in the absence of ARDS (weak recommendation, low quality evidence), while suggesting corticosteroids may benefit in severe COVID-19 with ARDS (weak recommendation, low quality evidence) [Alhazzani et al., 2020]. Further guidance from the World Health Organization does not recommend routine corticosteroid treatment, and that low to moderate corticosteroid doses for COVID-19 should only occur in the context of a clinical trial [World Health Organization, 2020]. Given the past efficacy and potential harms of corticosteroids in pneumonia from other causes, there is an urgent need to determine the safety and effectiveness of corticosteroids for the treatment of COVID-19, as called for in the Lancet [Russell et al., 2020]. At this time, it is not known the appropriate dose for corticosteroids in severe disease.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
due to COVID-19 or the optimal agent to be used, with a wide array of strategies in current practice. Clinical variation across regions is substantial, with choice of agent of hydrocortisone, methylprednisolone or dexamethasone all being used across regions for COVID-19 (Fadel et al., 2020; Isodori et al., 2020; recoverytrial.net).

6.2.9. Definitively addressing the role of corticosteroids in severe CAP.

As outlined above, despite RCTs and meta-analyses, more studies are needed to clarify the effect of corticosteroids on mortality. The most important clinical questions are:

- For patients with CAP who develop septic shock, does administration of hydrocortisone affect mortality and, if so, does duration of therapy influence this effect?
- For patients with CAP but who do not develop septic shock does administration of hydrocortisone affect mortality?
- For patients with influenza infection and CAP does hydrocortisone affect mortality?
- For patients with COVID-19 does corticosteroid strategy affect outcome?

Addition of clinical question to include the effect that COVID-19 may have on study outcomes.
The objective of this domain is to determine the effectiveness of different strategies of corticosteroid utilization in the treatment of severe CAP. We hypothesize that the probability of all-cause mortality at 90 days after enrollment will differ based on the allocated corticosteroid strategy. The following interventions will be available:

- No corticosteroid (hydrocortisone is not prescribed; no other corticosteroid is permitted; no administration of a placebo)
- Fixed duration hydrocortisone (IV hydrocortisone 50mg every 6 hours for 7 days)
- Shock-dependent duration hydrocortisone (IV hydrocortisone 50mg every 6 hours while in septic shock)

We hypothesize that the treatment effect of different corticosteroid strategies is different depending on the presence or absence of shock at the time of enrollment (strata-by-intervention interaction).

The following hypotheses apply to patients enrolled in the interpandemic model (i.e. PINSNP patients):

<table>
<thead>
<tr>
<th>Administrative changes to align language across all protocol documents</th>
</tr>
</thead>
</table>
| The objective of this domain is to determine the effectiveness of different strategies of corticosteroid utilization in the treatment of severe CAP, for patients who are eligible for the platform. We hypothesize that the probability of the occurrence of the primary endpoint specified in the relevant core protocol documents will differ based on the allocation to different corticosteroid strategies. The following interventions will be available:

- No corticosteroid (hydrocortisone is not prescribed; no other corticosteroid is permitted; no administration of a placebo)
- Fixed duration lower dose hydrocortisone (IV hydrocortisone 50mg every 6 hours for 7 days)
- Fixed duration higher dose hydrocortisone (IV hydrocortisone 100 mg every 6 hours for 7 days), only in the PISOP stratum.
- Shock-dependent duration hydrocortisone (IV hydrocortisone 50mg every 6 hours while in septic shock)

We hypothesize that the treatment effect of different corticosteroid strategies is different depending on the presence or absence of influenza infection at the time of enrollment (strata-by-intervention interaction).
<table>
<thead>
<tr>
<th>We hypothesize that the treatment effect of different corticosteroid strategies is different depending on allocation status in the Antiviral Domain. This is a treatment-by-treatment interaction between the interventions in the Corticosteroid Domain and the Antiviral Domain. The analytic structure of this domain enables several questions to be addressed. First, is the effect of corticosteroids for CAP general to all of CAP, or different in the subset with shock? Second, is the effect of corticosteroids for CAP general to all of CAP, or different in the subset with influenza? Third, is the effect of corticosteroids different when titrated to the period where the patient is clinically in septic shock, rather than by administering a fixed one-week course?</th>
</tr>
</thead>
<tbody>
<tr>
<td>We hypothesize that the treatment effect of different corticosteroid strategies is different depending on the presence or absence of shock at the time of enrollment (strata-by-intervention interaction). We hypothesize that the treatment effect of different corticosteroid strategies is different depending on the presence or absence of influenza infection at the time of enrollment (strata-by-intervention interaction.). We hypothesize that the treatment effect of different corticosteroid strategies is different depending on allocation status in the Influenza Antiviral Domain. This is a treatment-by-treatment interaction between the interventions in the Corticosteroid Domain and the Influenza Antiviral Domain. The analytic structure of this domain enables several questions to be addressed. First, is the effect of corticosteroids for CAP general to all of CAP, or different in the subset with shock? Second, is the effect of corticosteroids for CAP general to all of CAP, or different in the subset with influenza? Third, is the effect of corticosteroids different when titrated to the period where the patient is clinically in septic shock, rather than by administering a fixed one-week course?</td>
</tr>
</tbody>
</table>

Influenza added to differentiate between the influenza antiviral domain and the COVID-19 antiviral domain
The following hypotheses apply to patients enrolled in the pandemic model (i.e. PISOP patients):

- We hypothesize that, in patients with suspected or proven pandemic infection, the treatment effect of different corticosteroid strategies is different depending on whether SARS-CoV-2 infection is confirmed to be present or absent.
- We hypothesize that the treatment effect of different corticosteroid strategies is different depending on allocation status in the COVID-19 Antiviral Domain. This is a treatment-by-treatment interaction between the interventions in the Corticosteroid Domain and the COVID-19 Antiviral Domain.
- We hypothesize that the treatment effect of different corticosteroid strategies is different depending on allocation status in the COVID-19 Immune Modulation Domain. This is a treatment-by-treatment interaction between the interventions in the Corticosteroid Domain and the COVID-19 Immune Modulation Domain.

Additions to include the potential effects of illness due to COVID-19 and the potential interactions when participants are enrolled in other COVID-19 treatment domains.

<table>
<thead>
<tr>
<th>SECTION 8 TRIAL DESIGN</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 21</td>
<td>This domain will be conducted as part of a REMAP-CAP trial (see Core Protocol Section 7). Treatment allocation will be adaptive, as described in the core protocol documents.</td>
<td>This domain will be conducted as part of a REMAP-CAP trial. Treatment allocation will be adaptive, as described in all protocol documents.</td>
<td>Administrative change to align language to include all protocol documents</td>
</tr>
<tr>
<td>Section 8.1: Population</td>
<td>The REMAP enrolls patients with severe CAP admitted to ICU (see Core Protocol Section 7.3).</td>
<td>The REMAP enrolls patients with severe CAP or patients admitted to hospital with acute illness due to suspected or proven pandemic infection who are in the Severe State (see either the REMAP-CAP Core Protocol +/- Pandemic Appendix or the REMAP-COVID Core Protocol).</td>
<td>Administrative change to align language to refer to both sets of protocol documents that are compatible with this DSA.</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Section 8.2: Eligibility Criteria</td>
<td>Patients are eligible for this domain if they meet all of the platform-level inclusion and none of the platform-level exclusion criteria (see Core Protocol Section 7.4). Patients eligible for the REMAP may have conditions that exclude them from the Corticosteroid Domain.</td>
<td>Patients are eligible for this domain if they meet all of the platform-level inclusion and none of the platform-level exclusion criteria (as specified in either the REMAP-CAP Core Protocol +/- Pandemic Appendix or the REMAP-COVID Core Protocol. It is noted that during the COVID-19 pandemic, that platform-level inclusion criteria are different for patients with pandemic infection suspected or proven (PISOP stratum) and for patients in whom pandemic infection is neither suspected nor proven (PINSNP). Patients in either stratum are eligible for this domain. Patients otherwise eligible for the REMAP may have conditions that exclude them from the Corticosteroid Domain. This domain is available for patients who have acute illness due to suspected or proven pandemic infection in only the Severe State</td>
<td>Administrative change to align language to refer to both sets of protocol documents that are compatible with this DSA. Specification that this domain is available to both PISOP and PINSNP patients but PISOP patients must be in the severe illness severity state.</td>
</tr>
</tbody>
</table>
8.2.2. Domain exclusion criteria

Patients will be excluded from this domain if they have any of the following:

- Known hypersensitivity to hydrocortisone
- Intention to prescribe systemic corticosteroids for a reason that is unrelated to the current episode of CAP (or direct complications of CAP), such as chronic corticosteroid use before admission, acute severe asthma, or suspected or proven Pneumocystis jiroveci pneumonia
- More than 24 hours have elapsed since ICU admission
- The treating clinician believes that participation in the domain would not be in the best interests of the patient

Patients will be excluded from this domain if they have any of the following:

- Known hypersensitivity to hydrocortisone
- Intention to prescribe systemic corticosteroids for a reason that is unrelated to the current episode of CAP (or direct complications of CAP), such as chronic corticosteroid use before admission, acute severe asthma, or suspected or proven Pneumocystis jiroveci pneumonia
- More than 36 hours have elapsed since ICU admission (noting that this may be operationalized as more than 24 hours has elapsed since commencement of sustained organ failure support)
- Patient has been randomized in a trial evaluating corticosteroids, where the protocol of that trial requires ongoing administration of study drug
- The treating clinician believes that participation in the domain would not be in the best interests of the patient

Changed time window (rationale above)

Necessary exclusion related to participation in a trial that was evaluating corticosteroids.

8.3.1. Corticosteroid strategy

Patients will be randomly assigned to receive one of the following open-label study interventions. Patients allocated to the no corticosteroid intervention are not to receive any systemic corticosteroid, including hydrocortisone, for this episode of CAP and its direct

8.3.1. Corticosteroid interventions

Patients will be randomly assigned to receive one of the following open-label study interventions. All interventions will be commenced immediately after allocation status is revealed.

Clarification of when to commence all interventions and more concise description of the interventions
complications up until study day 28. There is no
administration of placebo. If a patient has been
receiving any corticosteroid for CAP or its direct
complications prior to enrollment, this medication must
be ceased. Administration of a systemic corticosteroid,
including hydrocortisone, is permitted only for the
treatment of new illnesses that develop in the course of
a patient’s ICU stay, such as asthma or treatment of an
allergic reaction. All use of systemic corticosteroids is
recorded and the reason for any administration is
documented using the protocol deviation form.
Patients allocated to the fixed-duration hydrocortisone
intervention are to be prescribed a course of
hydrocortisone 50mg IV every 6 hours for 7 days only.
Administration is to commence immediately after the
allocation status is revealed at the time of enrollment
on study day 1. The 7-day course will be administered
until at least the end of study day 7 and no longer than
the end of study day 8. From completion of the 7-day
course onwards, patients allocated to this intervention
are not to receive any systemic corticosteroid, including
hydrocortisone, for this episode of CAP and its direct
complications up until study day 28. Administration of a
systemic corticosteroid, including hydrocortisone, after
☐ No corticosteroid including hydrocortisone (no
placebo)
☐ Fixed duration lower dose hydrocortisone (200 mg
daily for 7 days)
☐ Fixed duration, higher dose hydrocortisone (400 mg
daily for 7 days)
☐ Shock-dependent hydrocortisone while the patient is
in septic shock
It is required that all sites will participate in the ‘No
corticosteroid’ intervention, and each site has the
option to opt-in to one or more of the remaining
interventions based on local practice and availability of
the intervention.
completion of the 7-day course is permitted only for the treatment of new illnesses that develop in the course of a patient’s ICU stay, such as asthma or treatment of an allergic reaction. All use of systemic corticosteroids is recorded and the reason for any administration from study day 9 onwards is documented using the protocol deviation form.

For patients who are discharged from the ICU before the end of the 7-day course of hydrocortisone, it is the responsibility of ICU staff to prescribe hydrocortisone to complete the 7-day course. However, it is not the responsibility of ICU medical or research staff to ensure continuation of the hydrocortisone after discharge from the ICU and it is not a protocol deviation if the course of hydrocortisone is not completed after ICU discharge.

Patients allocated to the shock-dependent duration hydrocortisone intervention, will have hydrocortisone, IV 50 mg every 6 hours, commenced if septic shock develops as a result of the patient’s initial episode of CAP, up until study day 28. Hydrocortisone is to be commenced as soon as septic shock is diagnosed, including immediately after enrollment if septic shock has already been diagnosed. For the purposes of this intervention, septic shock is defined as administration of
any vasopressor by continuous infusion where the treating clinician believes that the vasopressor requirement is caused by CAP and is not being administered for another reason such as untreated hypovolemia or solely to offset the effects of other ICU interventions such as administration of sedation or mechanical ventilation. The exact dose of vasopressor that defines septic shock is not set by the protocol but is based on the treating clinician’s judgement. The rationale for avoiding an exact dose is because no particular dose signifies ‘shock’ unambiguously. Dosage guidance of vasopressor for initiation of corticosteroids for this intervention is described in a separate operational document. Hydrocortisone administration is to cease when the clinician believes that septic shock has resolved. Septic shock would always be regarded as having resolved if vasopressor infusion has not been administered in the preceding 24 hours. A clinician may regard septic shock to have resolved if vasopressor infusion is being administered intermittently or at sufficiently low dose. If, after cessation of hydrocortisone, but during the same ICU admission, there is redevelopment of septic shock due to CAP (as defined above), then

| any vasopressor by continuous infusion where the treating clinician believes that the vasopressor requirement is caused by CAP and is not being administered for another reason such as untreated hypovolemia or solely to offset the effects of other ICU interventions such as administration of sedation or mechanical ventilation. The exact dose of vasopressor that defines septic shock is not set by the protocol but is based on the treating clinician’s judgement. The rationale for avoiding an exact dose is because no particular dose signifies ‘shock’ unambiguously. Dosage guidance of vasopressor for initiation of corticosteroids for this intervention is described in a separate operational document. Hydrocortisone administration is to cease when the clinician believes that septic shock has resolved. Septic shock would always be regarded as having resolved if vasopressor infusion has not been administered in the preceding 24 hours. A clinician may regard septic shock to have resolved if vasopressor infusion is being administered intermittently or at sufficiently low dose. If, after cessation of hydrocortisone, but during the same ICU admission, there is redevelopment of septic shock due to CAP (as defined above), then |

CONFIDENTIAL
hydrocortisone IV 50 mg every 6 hours is to be recommenced until resolution. Hydrocortisone should be ceased prior to ICU discharge.

For all patients in this domain who remain in ICU after study day 28, data on the administration of corticosteroids is not collected, and administration of corticosteroids after study day 28 is at the discretion of the treating clinician. The interventions in this domain apply to any ICU readmission, up until study day 28, noting that the criteria related to CAP and its direct complications still apply. If septic shock develops during the first or any subsequent ICU admission for a reason other than CAP, such as nosocomial infection, administration of corticosteroids is at the discretion of the treating clinician.

<table>
<thead>
<tr>
<th>8.3.2</th>
<th>No corticosteroid intervention</th>
<th>Patients allocated to the no corticosteroid intervention are not to receive any systemic corticosteroid, including hydrocortisone, for this episode of CAP and its direct complications up until study day 28. There is no administration of placebo. If a patient has been receiving any corticosteroid for CAP or its direct complications prior to enrollment, this medication must be ceased. Administration of a systemic corticosteroid, including hydrocortisone, is permitted only for the</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 23</td>
<td>8.3.2. No corticosteroid intervention</td>
<td>Patients allocated to the no corticosteroid intervention are not to receive any systemic corticosteroid, including hydrocortisone, for this episode of CAP and its direct complications up until study day 28. There is no administration of placebo. If a patient has been receiving any corticosteroid for CAP or its direct complications prior to enrollment, this medication must be ceased. Administration of a systemic corticosteroid, including hydrocortisone, is permitted only for the</td>
</tr>
<tr>
<td></td>
<td>Language modified to improve clarity</td>
<td></td>
</tr>
<tr>
<td>treatment of new illnesses that develop in the course of a patient’s ICU stay, such as asthma or treatment of an allergic reaction. All use of systemic corticosteroids is recorded and the reason for any administration is documented.</td>
<td>including hydrocortisone, is permitted only for the treatment of new illnesses that develop in the course of a patient’s ICU stay, such as asthma or treatment of an allergic reaction. All use of systemic corticosteroids is recorded and the reason for any administration is documented.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8.3.3. Dosing and duration of administration of corticosteroids</td>
<td>Patients allocated to the fixed-duration hydrocortisone intervention are to be prescribed a course of hydrocortisone 50mg IV every 6 hours for 7 days only. Administration is to commence immediately after the allocation status is revealed at the time of enrollment on study day 1. The 7-day course will be administered until at least the end of study day 7 and no longer than the end of study day 8. From completion of the 7-day course onwards, patients allocated to this intervention are not to receive any systemic corticosteroid, including hydrocortisone, for this episode of CAP, and its direct complications up until study day 28.</td>
<td>Updated with new intervention Administrative changes to include COVID-19 related CAP</td>
</tr>
<tr>
<td>Page 23</td>
<td>8.3.3. Dosing and duration of administration of corticosteroids</td>
<td>Page 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL
8.3.3. Dosing and duration of administration of corticosteroids

<table>
<thead>
<tr>
<th>Action</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the purposes of this intervention, septic shock is defined as</td>
<td>For the purposes of this intervention, septic shock is defined as administration of any vasopressor by continuous infusion where the treating clinician believes that the vasopressor requirement is caused by CAP and is not being administered for another reason such as untreated hypovolemia or solely to offset the effects of other ICU interventions such as administration of sedation or mechanical ventilation.</td>
</tr>
<tr>
<td>administration of corticosteroids</td>
<td>Administrative changes to include COVID-19 related CAP</td>
</tr>
<tr>
<td>Blank</td>
<td>Patients allocated to the fixed-duration higher dose hydrocortisone intervention are to be prescribed a course of hydrocortisone 100mg IV every 6 hours for 7 days only. Administration is to commence immediately after the allocation status is revealed at the time of enrollment on study day 1. The 7-day course will be administered until at least the end of study day 7 and no longer than the end of study day 8. From completion of the 7-day course onwards, patients allocated to this intervention are not to receive any systemic corticosteroid, including hydrocortisone, for this episode of COVID and its direct complications up until study day 28. Administration of a systemic corticosteroid, including hydrocortisone, after completion of the 7-day course is permitted only for the</td>
</tr>
<tr>
<td>Page 23</td>
<td>Specification of requirements for delivery of the added intervention</td>
</tr>
<tr>
<td>Page 24</td>
<td></td>
</tr>
</tbody>
</table>
treatment of new illnesses that develop in the course of a patient’s ICU stay, such as asthma or treatment of an allergic reaction. All use of systemic corticosteroids is recorded and the reason for any administration from study day 9 onwards is documented.

<table>
<thead>
<tr>
<th>8.5.1 Primary endpoint Page 25</th>
<th>The primary endpoint for this domain is the REMAP primary outcome (all-cause mortality at 90 days) as specified in the Core Protocol.</th>
<th>The primary endpoint for this domain is the REMAP primary outcome as specified in the REMAP-CAP Core Protocol Section +/- Pandemic Appendix or REMAP-COVID Core Protocol.</th>
<th>Administrative change to align language to refer to both sets of protocol documents that are compatible with this DSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.2. Secondary endpoints Page 26</td>
<td>All secondary endpoints as specified in the Core Protocol Section 7.6.2 The domain-specific secondary outcome measures (occurring during the index hospitalization, censored at 90 days after enrollment) will be: • serious adverse events (SAE) as defined in CORE Protocol.</td>
<td>All secondary endpoints as specified in the REMAP-CAP Core Protocol Section +/- Pandemic Appendix or REMAP-COVID Core Protocol The domain-specific secondary outcome measures (occurring during the index hospitalization, censored at 90 days after enrollment) will be: • SAE as defined in the core protocol documents and qualified in this DSA</td>
<td>Administrative change to align language to refer to both sets of protocol documents that are compatible with this DSA</td>
</tr>
</tbody>
</table>

SECTION 9 TRIAL CONDUCT

| 9.2. Criteria for discontinuation Page 26 | Refer to Core Protocol Section 8.7 for criteria for the discontinuation of participation in the REMAP-CAP trial. | Refer to relevant core protocol documents for criteria for the discontinuation of participation in the REMAP-CAP trial. | Administrative change to align language to include all protocol documents |
SECTION 10
STATISTICAL CONSIDERATIONS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 27</td>
<td>If a Platform Conclusion of equivalence in the primary endpoint is demonstrated the DSMB and the ITSC may consider continuation of randomization if clinically relevant differences in secondary endpoints have not been demonstrated and it is considered plausible that clinically relevant differences in one or more secondary endpoints may be capable of being demonstrated. In all other respects the stopping rules for this domain are those outlined in the Core Protocol Sections 7.8.6 to 7.8.9.</td>
<td>If a Platform Conclusion of equivalence in the primary endpoint is demonstrated the DSMB and the ITSC may consider continuation of randomization if clinically relevant differences in secondary endpoints have not been demonstrated and it is considered plausible that clinically relevant differences in one or more secondary endpoints may be capable of being demonstrated. In all other respects the stopping rules for this domain are those outlined in the relevant core protocol documents.</td>
<td>Administrative change to align language to include all protocol documents that are compatible with this DSA</td>
</tr>
</tbody>
</table>

| 10.2. Unit-of-analysis and strata | There are four units-of-analysis specified by the combination of shock and influenza strata status. Analysis and Response Adaptive Randomization are applied by shock and influenza status. The statistical model will permit borrowing between all stratum as specified in Core Protocol Section 7.8.3.3. It is noted that the definition of shock that is specified in the Core Protocol (presence or absence of inotrope or vasopressor infusion at baseline) determines strata. | This domain is analyzed in two different statistical models, with PINSNP patients evaluated in the interpandemic model and PISOP patients analyzed in the pandemic model. Within the PINSNP stratum there are four units-of-analysis, specified by the combination of shock and influenza strata status, with borrowing permitted. Analysis and Response Adaptive Randomization are applied by shock and influenza strata status. Analysis | Updated to provide more clarity regarding strata and units-of-analysis. Also to align language across all DSAs |

Page 367 of 431
status, and not the definition of septic shock that is used to define administration of hydrocortisone in the shock-dependent duration hydrocortisone intervention.

and Response Adaptive Randomization are applied by shock and suspected or proven influenza status. The statistical model will permit borrowing between all stratum as specified in Core Protocol. It is noted that the definition of shock that is specified in the Core Protocol (presence or absence of inotrope or vasopressor infusion at baseline) determines strata status, and not the definition of septic shock that is used to define administration of hydrocortisone in the shock-dependent duration hydrocortisone intervention. Within the PISOP stratum analysis also occurs in the pandemic statistical model. Within this stratum there are up to two possible units-of-analysis determined by SARS-CoV-2 status, specified as either confirmed or not confirmed, with borrowing permitted. Response Adaptive Randomization will be applied to patients in the PISOP stratum using probabilities derived from either the PISOP stratum or the SARS-CoV-2 confirmed stratum. Within the PISOP stratum, patients are only eligible for this domain only in the Severe State.

<table>
<thead>
<tr>
<th>10.3. Timing of revealing of randomization status</th>
<th>The timing of the revealing of allocation status and administration of interventions is specified to be Randomization with Immediate Reveal and Initiation (see Section 7.8.3.6 in Core Protocol). For patients</th>
<th>The timing of the revealing of allocation status and administration of interventions is specified to be Randomization with Immediate Reveal and Initiation (see relevant core protocol documents). For patients</th>
<th>Administrative change to align language to include all protocol documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL
allocated to the shock-dependent duration hydrocortisone intervention, who are not in septic shock at the time of randomization, Immediate Reveal and Initiation is interpreted as intention to commence hydrocortisone if septic shock develops.

allocated to the shock-dependent duration hydrocortisone intervention, who are not in septic shock at the time of randomization, Immediate Reveal and Initiation is interpreted as intention to commence hydrocortisone if septic shock develops.

<table>
<thead>
<tr>
<th>10.4.4. Interactions with interventions in other domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10.4.1. Interactions specified in the interpandemic model</th>
</tr>
</thead>
<tbody>
<tr>
<td>An a priori interaction with the Antibiotic Domains is not considered possible and will not be incorporated into the statistical models used to analyze this domain.</td>
</tr>
<tr>
<td>An a priori interaction with the Macrolide Duration Domain is not considered possible and will not be incorporated into the statistical models used to analyze this domain.</td>
</tr>
<tr>
<td>An a priori interaction with the Antiviral Domain is considered possible and will be incorporated into the statistical models used to analyze this domain.</td>
</tr>
<tr>
<td>No interaction is evaluable between the Ventilation Domain and this domain.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10.4.1.4.4. Interactions specified in the interpandemic model</th>
</tr>
</thead>
<tbody>
<tr>
<td>An a priori interaction with the Antibiotic Domains is not considered possible and will not be incorporated into the statistical models used to analyze this domain.</td>
</tr>
<tr>
<td>An a priori interaction with the Macrolide Duration Domain is not considered possible and will not be incorporated into the statistical models used to analyze this domain.</td>
</tr>
<tr>
<td>An a priori interaction with the Influenza Antiviral Domain is considered possible and will be incorporated into the statistical models used to analyze this domain.</td>
</tr>
<tr>
<td>An a priori interaction with the Vitamin C Domain is not considered possible and will not be incorporated into the statistical models used to analyze this domain.</td>
</tr>
</tbody>
</table>

Section divided into new sub-sections for clarity

Influenza added to differentiate between the influenza antiviral domain and the COVID-19 antiviral domain

Additions to include new domains and models added since this the
<table>
<thead>
<tr>
<th>10.4.2. Interactions specified in the pandemic model</th>
<th>Blank</th>
<th>10.4.2. Interactions specified in the pandemic model</th>
<th>New sub-section for clarity</th>
<th>Additions to include new domains and models added since the previous version of this DSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No interaction with any domain that is exclusively in the pandemic model is possible as analysis occurs in a different statistical model. No interaction is evaluable between the Ventilation Domain and this domain.</td>
<td></td>
<td>No interaction with any domain that is exclusively in the interpandemic model is possible as analysis occurs in a different statistical model. An a priori interaction with the COVID-19 Antiviral Domain is considered possible and will be incorporated into the statistical models used to analyze this domain. An a priori interaction with the COVID-19 Immune Modulation Domain is considered possible and will be incorporated into the statistical models used to analyze this domain. An informative prior that is negative is applied to the interaction between interventions in this domain that include administration of hydrocortisone and the interferon-beta-1a intervention in the Immune Modulation Domain (see Immune Modulation DSA for all details). An a priori interaction with the therapeutic anticoagulation is not considered possible and will not</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
be incorporated into the statistical models used to analyze this domain. An a priori interaction with the immunoglobulin is not considered possible and will not be incorporated into the statistical models used to analyze this domain. An a priori interaction with the Vitamin C Domain is not considered possible and will not be incorporated into the statistical models used to analyze this domain. No interaction is evaluable between the Ventilation Domain and this domain.

<table>
<thead>
<tr>
<th>10.5. Nesting of interventions</th>
<th>The interventions in this domain will be analyzed without application of nesting. This is because the shock-dependent duration hydrocortisone intervention will be more like the fixed-duration hydrocortisone intervention in patients who develop septic shock and more like the no corticosteroid intervention in patients who do not develop septic shock (i.e. no hydrocortisone is administered).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 29</td>
<td>10.5. Nesting</td>
</tr>
<tr>
<td></td>
<td>Within the pandemic statistical model, there is one nest comprising the lower dose fixed duration hydrocortisone intervention and the higher dose fixed duration hydrocortisone intervention. The rationale for this is that the treatment effect of different doses of steroids is likely to be more similar than no steroids. Within the interpandemic statistical model interventions in this domain will be analyzed without application of nesting. This is because the shock-dependent duration hydrocortisone intervention will be more like the fixed-duration hydrocortisone intervention in patients who develop septic shock and more like the no corticosteroid intervention.</td>
</tr>
<tr>
<td></td>
<td>Specification of a nest comprising both fixed duration hydrocortisone interventions.</td>
</tr>
<tr>
<td>10.6. Threshold probability for superiority, effectiveness, and inferiority</td>
<td>Blank</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>In the interpandemic model, superiority and inferiority are evaluated using the threshold probabilities specified in the Core Protocol. In the pandemic model, superiority, effectiveness, and inferiority are evaluated using the threshold probabilities specified in the Pandemic Appendix and the REMAP-COVID Core Protocol.</td>
<td></td>
</tr>
<tr>
<td>Administration change to align language to include all protocol documents that are compatible with this DSA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10.7. Threshold odds ratio delta for equivalence and futility</th>
<th>10.6. Threshold odds ratio delta for equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>The threshold odds ratio for equivalence in this domain is that specified in the Core Protocol (Section 7.8.8).</td>
<td>10.7. Threshold odds ratio delta for equivalence and futility</td>
</tr>
<tr>
<td>In the interpandemic model, the threshold odds ratio for equivalence in this domain is that specified in the relevant core protocol documents. In the pandemic model, the Platform Conclusion of equivalence will not be evaluated in this domain. The same odds ratio deltas as specified in the relevant core protocol documents for equivalence will be used for futility. This will be applied in a one side analysis for futility of active corticosteroid interventions.</td>
<td>Modification of the possible platform conclusions to replace evaluation of equivalence with futility.</td>
</tr>
</tbody>
</table>
10.8. Informative priors

As noted in the interaction section, an informative prior is set for interaction between the interferon-beta-1a intervention in the Immune Modulation Domain (see Immune Modulation DSA for all details).

10.9. Post-trial subgroups

Administrative change to heading spelling only

<table>
<thead>
<tr>
<th>SECTION 11 ETHICAL CONSIDERATIONS</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1. Data Safety and Monitoring Board Page 30</td>
<td>The DSMB should be aware that the superiority, inferiority, or equivalence of different interventions with respect to the primary endpoint is possible, and if equivalence is demonstrated, determination of the optimal intervention may be based on secondary endpoints.</td>
<td>The DSMB should be aware that the superiority, efficacy, inferiority, futility, or equivalence of different interventions with respect to the primary endpoint are possible, and if equivalence is demonstrated, determination of the optimal intervention may be based on secondary endpoints. The DSMB should take into account the public health, as well as clinical significance, of the analyses of this domain and are empowered to discuss results with relevant international and national public health authorities.</td>
<td>Administrative change to align language across all protocol documents</td>
</tr>
</tbody>
</table>
authorities, with rapid dissemination of results to the larger community being the goal. Safety secondary outcomes will be reported to the DSMB who are empowered to require additional analyses regarding these outcomes are required.

<table>
<thead>
<tr>
<th>11.2. Potential domain-specific adverse events</th>
<th>Potential domain-specific harms related to corticosteroid therapy include hyperglycemia, nosocomial infections and ICU-acquired weakness. However, the relevant clinical endpoint related to these potential harms is a reduction in VFDs or organ failure free days (OFFDs), an increased LOS in ICU or hospital, or death. We will collect these endpoints as described in the Core Protocol. Other SAEs should be reported only where, in the opinion of the site investigator, the event might reasonably have occurred as a consequence of a study intervention or study participation (see Core Protocol Section 8.13).</th>
<th>Administrative change to align language to include all protocol documents that are compatible with this DSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3. Domain-specific consent issues</td>
<td>Hydrocortisone has been used by clinicians for patients with severe CAP for decades. However, there is substantial variation between clinicians within and between countries and hospitals within countries. This variation in practice occurs, predominantly, because the limited high-quality evidence is contradictory. If this</td>
<td>Update to include a section included in DSAs that enrol patients in the PISOP stratum</td>
</tr>
</tbody>
</table>

As noted in the Background, and endorsed by the World Health Organization, in the absence of evidence of effectiveness of specific treatments for COVID-19, the use of a no treatment control is both appropriate and ethical. For patients who are not competent to consent, either prospective agreement or entry via waiver of
domain were not part of this REMAP it is reasonable to presume that some, but far from all, patients at sites that are participating in the REMAP would receive corticosteroid treatment.

Corticosteroids are not contraindicated in women who are pregnant and patients who are pregnant will not be excluded from this domain.

The choice of which the three interventions are available at any site (i.e. any two or all three interventions) is determined by the participating site. Sites for which standard care is to routinely administer hydrocortisone to patients with septic shock should not participate in the no hydrocortisone intervention. The remaining two interventions administer hydrocortisone to patients who have or develop septic shock, but do so for different durations for which may sites will have clinical equipoise.

Corticosteroids are not contraindicated in women who are pregnant and patients who are pregnant will not be excluded from this domain.

The choice of which the three interventions are available at any site (i.e. any two or all three interventions) is determined by the participating site. Sites for which standard care is to routinely administer hydrocortisone to patients with septic shock should not participate in the no hydrocortisone intervention. The remaining two interventions administer hydrocortisone to patients who have or develop septic shock, but do so for different durations for which may sites will have clinical equipoise.

Consent or some form of deferred consent can be applied, as required by an appropriate ethical review body. During a pandemic, visiting by relatives of affected patients may not be possible. In such situations, alternative methods for confirming consent including electronic and telephone communication, as permitted by an appropriate ethical review body, may be acceptable methods of confirming agreement to participate in this (and other) domains of the platform.

Clinicians are directed not to enroll an individual patient if the treating clinician believes that participation in this domain is not in the best interests of the patient.

Hydrocortisone has been used by clinicians for patients with severe CAP for decades. However, there is substantial variation between clinicians within and between countries and hospitals within countries. This variation in practice occurs, predominantly, because the limited high-quality evidence is contradictory. If this domain were not part of this REMAP it is reasonable to presume that some, but far from all, patients at sites that are participating in the REMAP would receive corticosteroid treatment.
Corticosteroids are not contraindicated in women who are pregnant and patients who are pregnant will not be excluded from this domain. The choice of which the four interventions are available for PISOP patients and the three interventions for PINSNP patients at any site is determined by the participating site. Sites for which standard care is to routinely administer hydrocortisone to patients with septic shock should not participate in the no hydrocortisone intervention. The remaining two interventions administer hydrocortisone to patients who have or develop septic shock, but do so for different durations or doses for which may sites will have clinical equipoise.

<table>
<thead>
<tr>
<th>SECTION 12</th>
<th>Original text</th>
<th>New Text</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOVERNANCE ISSUES</td>
<td>Funding sources for the REMAP-CAP trial are specified in the Core Protocol Section 2.5. This domain has not received any additional domain-specific funding.</td>
<td>Funding sources for the REMAP-CAP trial are specified in the relevant core protocol documents. This domain has not received any additional domain-specific funding but such funding may be obtained during the life-time of the domain.</td>
<td>Administrative change to align language across all protocol documents</td>
</tr>
</tbody>
</table>
Statistical Analysis Plan
for the Corticosteroid Domain
for Patients with COVID-19 Pandemic Infection Suspected Or Proven (PISOP)

COVID-19 Corticosteroid Domain SAP Version 1.0 dated 20 July 2020
TABLE OF CONTENTS

1. COVID-19 Corticosteroid Domain SAP Version ... 381
 1.1. Version history ...381
2. SAP Authors ..381
3. Introduction ..382
4. Design Considerations ...382
5. Unblinding ...384
6. Interventions ..384
7. Disease States ...385
8. Analysis Populations ..385
9. Endpoints ..385
10. Graphical Data Summaries ..387
11. Descriptive Statistics ...387
12. Baseline Characteristics ...387
13. Compliance ...387
14. Analytic Approach ...388
 14.1. Primary Analysis of Primary Endpoint ...388
 14.2. Analytic Approach for Secondary Dichotomous Endpoints ..389
 14.3. Analytic Approach for Secondary Time-To-Event Endpoints ..389
 14.4. Markov Chain Monte Carlo (MCMC) Model Stability ..390
 14.5. Model Outputs ...390
 14.6. Exploratory Analyses..390
15. Specific Prospective Analyses ..391
 15.1. The primary analysis for the Corticosteroid Domain ..392
 15.2. The primary mortality analysis for the Corticosteroid Domain ...394
 15.3. The secondary analysis combining corticosteroid arms for the Corticosteroid Domain ...396
 15.4. The secondary mortality analysis combining corticosteroid arms for the Corticosteroid Domain ..398
 15.5. A secondary analysis restricted to the Corticosteroid Domain ITT400
 15.6. A secondary analysis restricted to the Corticosteroid Domain Non-negative COVID.....402
 15.7. A secondary analysis for the Corticosteroid Domain ITT combining corticosteroid intervention arms ..404
 15.8. A sensitivity analysis restricted to the Corticosteroid Domain ITT with site and time factors removed ..406
15.9. A secondary analysis of in-hospital mortality restricted to the Corticosteroid Domain ITT

15.10. A secondary analysis of in-hospital mortality for Corticosteroid Domain Non-negative
patients ..410

15.11. A sensitivity analysis of in-hospital mortality restricted to the Corticosteroid Domain ITT
with factors for site and time removed ...412

15.12. A secondary analysis of in-hospital mortality restricted to the Corticosteroid Domain ITT
with the steroid interventions combined ...414

15.13. A sensitivity analysis of in-hospital mortality restricted to the Corticosteroid Domain ITT
with factors for site and time removed ...416

15.14. A secondary analysis of progression to intubation, ECMO, or death, restricted to patients
not on MV or ECMO at baseline ..418

15.15. A secondary analysis of days-free of vasopressor/inotropes use420

15.16. A secondary analysis of days-free of ventilation ...422

15.17. A secondary analysis of length of ICU stay ...424

15.18. A secondary analysis of length of hospital stay ...426

15.19. A secondary analysis of the WHO Ordinal Scale ...428

15.20. The primary safety analysis for the Corticosteroid Domain ...430
1. COVID-19 Corticosteroid Domain SAP Version

The version is in this document’s header and on the cover page.

1.1. Version history

2. SAP Authors

Scott Berry, Berry Consultants, Austin, TX, USA
Lindsay Berry, Berry Consultants, Austin, TX, USA
Elizabeth Lorenzi, Berry Consultants, Austin, TX, USA
Steven Webb, Monash University, Melbourne, Victoria, Australia
Anthony Gordon, Imperial College, London, UK
Derek C. Angus, University of Pittsburgh and UPMC Health System, PA, USA
3. INTRODUCTION

This statistical plan for the corticosteroid domain in the pandemic stratum of REMAP-CAP is an appendix to the Pandemic Appendix to Core (PAtC) Statistical Analysis Plan (SAP). This document synthesizes that information and describes the details of the statistical analysis of the corticosteroid domain within the pandemic stratum of REMAP-CAP. This plan details the statistical analyses in the REMAP-CAP core SAP and the pandemic stratum SAP applied to the corticosteroid domain. The plan here is completely prespecified for the imminent unblinding of the results for the corticosteroid domain within the pandemic infection suspected or proven (PISOP) (COVID-19) stratum.

The corticosteroid domain was halted in the PISOP stratum following the release of the results of the RECOVERY trial on June 16th showing strong positive effects of dexamethasone in moderate and severe patients (The RECOVERY Collaborative Group. NEJM July 17th 2020). The REMAP-CAP International Trial Steering Committee (ITSC) decided on June 17th 2020 to stop the corticosteroid domain of REMAP-CAP within the PISOP stratum and report the results. REMAP-CAP explores multiple treatment domains by randomizing patients within multiple domains and was designed to have modular results for individual interventions or full domains announced upon reaching a platform conclusion. For this domain, there have not been any interim analyses conducted and it was closed based on external results, and hence the results for the corticosteroid domain will be unblinded and made public. This document prespecifies the analysis plan for this unblinding.

The authors of this document are completely blinded to the data and results in REMAP-CAP.

4. DESIGN CONSIDERATIONS

REMAP-CAP is designed with Bayesian analyses as the primary analysis method for the trial. There is one overarching Bayesian model, prespecified in the SAP, driving all adaptations, platform conclusions, and result summaries. That primary statistical analysis model will be used to report the results for the corticosteroid domain within the PISOP stratum.
The decision to use a Bayesian analysis was driven in part by the uncertainty of the extent of the pandemic. The sample size could be small, or large, and there may be unexpected external events, such as the RECOVERY trial report, that alter the design of REMAP-CAP. Given the expected evolution of the design, and uncertain sample size, the Bayesian approach is more appropriate.

REMAP-CAP defines several statistical triggers within the trial, that at any analysis of the trial would result in public disclosure and a declaration of a platform conclusion.

The following internal statistical triggers were defined for the corticosteroid domain:

1. **Domain Superiority.** If a single intervention within the corticosteroid domain has at least a 99% posterior probability of being in the best regimen for patients in the severe state of the PISOP stratum, this would trigger domain superiority of that intervention.

2. **Intervention Efficacy.** If an intervention is deemed to have at least a 99% posterior probability of being superior to the control, then a declaration of efficacy of that intervention would be declared. This statistical trigger is active for each of the non-control arms in the corticosteroid domain.

3. **Intervention Equivalence.** If two non-control interventions have a 90% probability of equivalence, this would trigger a public disclosure of intervention equivalence.

4. **Intervention Futility.** Because the domain has been stopped no analyses for futility will be conducted.

The 99% threshold for efficacy was selected to have good properties for potential outbreak sample sizes. For example, the type I error rate of any conclusion of efficacy for a single intervention 'A' vs. control is less than 2.5% for approximately less than 1000 patients on intervention 'A' with multiple interim analyses (see main and pandemic SAP).

Importantly, the ITSC halted this portion of REMAP-CAP before the first interim analysis, which by coincidence is now due. At analysis, therefore, being halted early does not change the Bayesian statistical triggers of the domain: the same thresholds apply. That said, because there will be no further enrollment into this domain for patients within the pandemic stratum (and possibly no further randomization to corticosteroids or not in any
RCT of COVID19), the results are of value regardless of whether they support any particular internal trigger. Thus, we emphasize the posterior probabilities (and 95% credible intervals) are more informative in contributing to overall knowledge about corticosteroid therapy in COVID-19 than whether a particular posterior probability exceeded a pre-defined threshold or not. For example, a posterior probability of benefit of 80% or higher would be quite promising, especially in light of the findings of RECOVERY.

5. UNBLINDING

REMAP-CAP has multiple domains to which patients can be randomized and multiple interventions within domains. At the unblinding of the corticosteroid domain there are other domains to which the patients have been randomized that will not be unblinded at this analysis. In the analysis plan there will be analyses conducted by the Statistical Analysis Committee (SAC) using additional randomizations and also unblinding of other randomizations. The SAC is unblinded to all arms/domains in their function for REMAP-CAP. There will also be other analyses that are conducted with only knowledge of the corticosteroid allocation status for patients. These may be conducted by investigators who are blinded to other information about other domains. These analyses are identified below.

6. INTERVENTIONS

There are 4 interventions within the corticosteroid domain. These are

1. No corticosteroid/hydrocortisone (control)
2. Fixed duration hydrocortisone for 7 days (fixed-duration)
3. Shock-Dependent hydrocortisone (shock-dependent)
4. High-Dose hydrocortisone for 7 days

For all analyses and data summaries the high-dose 7-day hydrocortisone arm will be combined with the fixed-duration arm. These interventions were originally nested, which allows their pooling, and very few patients were randomized to Intervention #4. The results for Intervention #4 will be reported in a stacked bar plot.
7. DISEASE STATES

There are 2 disease states in the PATC, which are moderate and severe. The corticosteroid domain was only randomized to patients in the severe state, so only patients in the severe state will be analyzed.

8. ANALYSIS POPULATIONS

1. REMAP-COVID severe state intent-to-treat (ITT). This population consists of all PISOP patients in the severe state randomized within at least one domain.
2. Corticosteroid Domain ITT. All patients randomized to an intervention in the corticosteroid domain within the PISOP stratum.
3. Corticosteroid domain Non-negative COVID. All patients randomized in the corticosteroid domain after removing those with \(\geq 1 \) negative test for COVID and no positive tests.

9. ENDPOINTS

The following end points will be analyzed, graphically displayed, and summarized through descriptive statistics.

1. Organ-Support Free-Days (OSFD)
 a. An ordinal endpoint with mortality as the worst outcome. The primary endpoint for the REMAP-CAP PISOP stratum. The organs considered are cardiovascular (vasopressor/inotrope support) and respiratory (ventilation support). See the PATC SAP for a detailed description.

2. In-Hospital Mortality
 a. A dichotomous endpoint of in-hospital death where the death component corresponds to a \(-1\) on the OSFD endpoint.

3. Mortality
 a. This is a time-to-event endpoint through 90-days.
 b. Any patient currently in the hospital or transferred on organ support to an alternative care facility will be censored at their last known status alive.
 c. Any patient successfully discharged from hospital, alive, without organ support, will be imputed as a 90-day “no mortality” event if 90-day mortality data is not yet recorded.
4. **Progression to intubation and mechanical ventilation, extracorporeal membrane oxygenation (ECMO), or death**
 a. A dichotomous endpoint of whether a patient progresses to intubation and mechanical ventilation, ECMO or death in hospital.

5. **Vasopressor/Inotrope Free-Days**
 a. An ordinal outcome of number of days free of Vasopressor/Inotropes. This is the exact calculation of OSFD, with Vasopressor/Inotropes as the only organ support category. In-hospital death is considered a −1.

6. **Ventilator Free-Days**
 a. An ordinal outcome of number of days free of ventilation. This is the exact calculation of OSFD, with ventilation as the only organ support category. In-hospital death is considered a −1.

7. **Duration of ICU stay**
 a. A time-to-event endpoint of leaving the ICU alive. If a patient is known to leave the ICU and return to the ICU within 14-days that intervening time will be ignored.
 b. This variable will be truncated at 90-days: all deaths in ICU will be considered 90-days with no liberation of ICU.
 c. Patients still in the ICU at data snapshot will be considered censored.

8. **Duration of hospital stay**
 a. A time-to-event endpoint of leaving the hospital alive. If a patient is known to leave and return to the hospital within 14-days that intervening time will be ignored.
 b. This variable will be truncated at 90-days and all deaths in-hospital will be considered 90-days with no events.
 c. Patients still in the hospital at data snapshot will be considered censored.

9. **At least one serious adverse event (SAE)**
 a. A dichotomous endpoint of SAE.

10. **The World Health Organization (WHO) 8-point ordinal scale, measured at day 14.**
 a. The WHO 8-point ordinal scale:
 1 = No limitations
 2 = Limitation of activities
 3 = Hospitalized, no oxygen therapy
4 = Oxygen by mask or nasal prongs
5 = Non-invasive ventilation or high-flow oxygen
6 = Intubation and mechanical ventilation
7 = Ventilation + additional organ support: vasopressors, renal replacement therapy (RRT), ECMO
8 = Death

10. GRAPHICAL DATA SUMMARIES

1. All ordinal endpoints will be graphed using stacked cumulative bar plots
2. All time-to-event endpoints will be plotted using Kaplan-Meier plots

11. DESCRIPTIVE STATISTICS

1. Ordinal endpoints will be summarized by the cumulative frequency of each outcome. The 25th, 50th, and 75th percentiles will be summarized.
2. Dichotomous endpoints will be summarized by the proportion in each category.
3. Time-to-event outcomes will summarize the 2.5th, 10th, 25th, 50th, 75th, 90th, and 97.5th percentiles from the Kaplan-Meier estimates.

12. BASELINE CHARACTERISTICS

The following demographics will be summarized across arms. More may be added as baseline summaries.

Age, sex, BMI, ethnicity, APACHE II score (measured from hospital admission to randomization), confirmed SARS CoV-2 infection, preexisting conditions, baseline use of high-frequency nasal oxygenation, non-invasive ventilation, invasive mechanical ventilation, ECMO, vasopressors/inotropes, renal replacement therapy, and etomidate, and miscellaneous physiological values.

13. COMPLIANCE

The compliance to corticosteroid use will be summarized descriptively as the fraction of use, the amount, and duration for each randomized arm.
14. ANALYTIC APPROACH

Each inferential analysis will be done using a Bayesian model. Some default frequentist methods are used for exploration and description. A summary of the analysis methods is provided below.

14.1. Primary Analysis of Primary Endpoint

The **primary analysis model** is a Bayesian cumulative logistic model for the ordinal primary endpoint. The model is described below.

The primary endpoint for the severe state has 23 possible, ordered outcomes. Let the outcome for a patient be labeled as Y_i, with possible values, –1 (death), 0, 1, ..., 21, 22. The outcome of 22 for the severe state (never received organ support) is not possible. Hence there are 23 possible outcomes. A cumulative logistic model is specified. The model is structured so that an odds-ratio >1 implies patient benefit. The full details of the model are specified in the Current State of The Statistical Model, dated July 21, 2020. The model has factors for:

- Each level of the ordinal endpoint
- Each Global site, nested within country
- Age; ≤39, 40-49, 50-59, 60-69, 70-79, 80+
- Sex
- Time; 2-week buckets of time working backwards from the last enrolled patient, with the most recent bucket being a month.
- For each domain an effect for being randomized to the domain
- An effect for each intervention within each domain
- Specified interactions in the model between domains

The primary analysis for the Corticosteroid domain uses the following rules:

- For the primary analysis, the high-dose 7-day hydrocortisone arm will be combined with the 7-day hydrocortisone arm (fixed-duration). They were originally nested, which allows their pooling, and there were very few patients randomized to the high-dose 7-day hydrocortisone arm.
- All sites within a country that have <5 patients randomized will have their results combined into a single site within that country.
• If there is an outcome in the ordinal scale that did not occur in the data, then that outcome will be combined to a single outcome with a neighboring outcome (the worse outcome). This is done for model stability. For example, if the outcome 11 never occurred a combined outcome of 10 & 11 will be modeled for the analysis.

The primary analysis model will be referenced with certain model assumptions for sensitivity analyses. For example, the “time effects” in the model could be assumed to be 0.

14.2. Analytic Approach for Secondary Dichotomous Endpoints

A Bayesian logistic regression model will be used for each dichotomous outcome. The model will always specify the “event” as the negative outcome, so that an odds-ratio >1 implies benefit to patients within each model. The model is the standard logistic link function model:

\[\log\left(\frac{\pi}{1-\pi}\right) = \alpha + \text{[factors]} \]

References will be made to the factors in the model and their prior distribution. Many of these factors will be the same as the primary analysis model, with the same priors, as the parameters have similar interpretation. If not otherwise specified the prior distribution for the main effect is \(\alpha \sim N(0, 1.82^2) \) (similar to a uniform prior on the probability scale).

14.3. Analytic Approach for Secondary Time-To-Event Endpoints

All inferential time-to-event analyses will be done using a Bayesian piecewise exponential model. The Bayesian time-to-event model is intended to mirror a Cox proportional hazards model, with the underlying hazard rate modeled with a piecewise exponential model. The underlying hazard will be modeled with a hazard rate for 24-hour period each day in the model. The prior distribution for each day hazard rate is a gamma distribution with 1 day of exposure and a mean equal to the total exposure divided by the total number of events. This prior will have very little weight but will provide numerical stability to the model. Each factor is incorporated as a proportional hazard rate through an additive linear model of the log-hazard. The default prior for each factor is the same as for the log-odds in the ordinal model. If other non-specified variables are added to the model, then a normal distribution with mean 0 and standard deviation 10 will be utilized.
14.4. Markov Chain Monte Carlo (MCMC) Model Stability

The Bayesian models have many parameters and there may be risk of poor model stability, including convergence of the MCMC and the mixing behavior. These instabilities may be based on sparse data on the outcome or covariates. The statisticians running the model may make changes that do not affect the overall outcome but provide reliable model diagnostics and scientific rigor. Any alterations will be noted.

14.5. Model Outputs

The standard model outputs for each treatment effect will be the mean, standard deviation, median, and 95% credible intervals (all credible intervals will range from equal-tailed percentiles, so 95% credible intervals will range from the 2.5th percentile to the 97.5th percentile). For the ordinal model the odds-ratio will be summarized. For the dichotomous endpoints, the odds-ratio will be summarized. For the time-to-event model the hazard ratio will be summarized.

For each inferential model, a posterior probability that one arm is superior will be provided for each comparison between arms. This posterior probability has been identified as the primary analysis metric between arms. A posterior probability greater than 99% of superiority has been identified as statistically significant in REMAP-CAP.

14.6. Exploratory Analyses

Exploratory analyses after unblinding will not be considered inferential and no p-values will be presented. Any post-hoc exploratory analyses will use the following methods:

1. Ordinal endpoints will be compared using a cumulative proportional odds model with summaries of the odds-ratio, with 95% confidence intervals and Wilcoxon test for robustness against a lack of proportional odds.

2. Time-to-Event analyses will utilize a Cox proportional hazards model, summarizing the hazard ratios and 95% confidence intervals.

3. Continuous endpoints will compare means with 95% confidence intervals based on two-sample t-test procedures.
4. Dichotomous proportions will be compared using logistic regressions summarizing the odds-ratio and 95% confidence intervals. Differences between proportions will be summarized using observed differences and normal approximations for the 95% credible intervals.

15. SPECIFIC PROSPECTIVE ANALYSES

There are 20 specific prospective analyses, summarized in the table and described in detail below.

<table>
<thead>
<tr>
<th>#</th>
<th>Status</th>
<th>Population</th>
<th>Endpoint</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Primary</td>
<td>REMAP-COVID severe state ITT</td>
<td>OSFD</td>
<td>Includes all interventions and interactions</td>
</tr>
<tr>
<td>15.2</td>
<td>Primary</td>
<td>REMAP-COVID severe state ITT</td>
<td>In-Hospital Mortality</td>
<td>Includes all interventions and interactions</td>
</tr>
<tr>
<td>15.3</td>
<td>Secondary</td>
<td>REMAP-COVID severe state ITT</td>
<td>OSFD</td>
<td>Includes all interventions and interactions, combined corticosteroid arms</td>
</tr>
<tr>
<td>15.4</td>
<td>Secondary</td>
<td>REMAP-COVID severe state ITT</td>
<td>In-Hospital Mortality</td>
<td>Includes all interventions and interactions, combined corticosteroid arms</td>
</tr>
<tr>
<td>15.5</td>
<td>Secondary</td>
<td>Corticosteroid Domain ITT</td>
<td>OSFD</td>
<td></td>
</tr>
<tr>
<td>15.6</td>
<td>Secondary</td>
<td>Corticosteroid Domain Non-negative COVID</td>
<td>OSFD</td>
<td></td>
</tr>
<tr>
<td>15.7</td>
<td>Secondary</td>
<td>Corticosteroid Domain ITT</td>
<td>OSFD</td>
<td>Combined corticosteroid arms</td>
</tr>
<tr>
<td>15.8</td>
<td>Sensitivity</td>
<td>Corticosteroid Domain ITT</td>
<td>OSFD</td>
<td>Remove site and time effects</td>
</tr>
<tr>
<td>15.9</td>
<td>Secondary</td>
<td>Corticosteroid Domain ITT</td>
<td>In-Hospital Mortality</td>
<td></td>
</tr>
<tr>
<td>15.10</td>
<td>Secondary</td>
<td>Corticosteroid Domain Non-negative COVID</td>
<td>In-Hospital Mortality</td>
<td></td>
</tr>
<tr>
<td>15.11</td>
<td>Secondary</td>
<td>Corticosteroid Domain ITT</td>
<td>In-Hospital Mortality</td>
<td>Combined corticosteroid arms</td>
</tr>
<tr>
<td>15.12</td>
<td>Sensitivity</td>
<td>Corticosteroid Domain ITT</td>
<td>In-Hospital Mortality</td>
<td>Remove site and time effects</td>
</tr>
<tr>
<td>15.13</td>
<td>Secondary</td>
<td>Corticosteroid Domain ITT</td>
<td>Mortality</td>
<td>Time-to-events modeling</td>
</tr>
<tr>
<td>15.14</td>
<td>Secondary</td>
<td>Corticosteroid Domain ITT not on MV, ECMO at baseline</td>
<td>Progression to intubation, ECMO, death</td>
<td></td>
</tr>
<tr>
<td>15.15</td>
<td>Secondary</td>
<td>Corticosteroid Domain ITT</td>
<td>Days-Free of vasopressor/inotropes</td>
<td></td>
</tr>
<tr>
<td>15.16</td>
<td>Secondary</td>
<td>Corticosteroid Domain ITT</td>
<td>Days-Free of ventilation</td>
<td></td>
</tr>
</tbody>
</table>
15.1. *The primary analysis for the Corticosteroid Domain*

- **Population:** REMAP-COVID severe state ITT
- **Endpoint:** Organ-Support Free-Days
- **Model:** Primary analysis ordinal model
- **Factors:** All interventions and specified interactions, age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- **Analysis:** Conducted by the unblinded SAC

Notes

- a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.
- b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.
- c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration and the shock-based intervention would hit the statistical trigger for equivalence.
- d. No information on the effects of the other domains or their interactions will be reported. This information will remain blinded until each domain/intervention reaches a conclusion.

The following posterior probabilities will be reported

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>
The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.2. **The primary mortality analysis for the Corticosteroid Domain**

- Population: REMAP-COVID severe state ITT
- Endpoint: In-Hospital Mortality
- Model: Primary dichotomous model
- Factors: All interventions and specified interactions, age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the unblinded SAC

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

d. No information on the effects of the other domains or their interactions will be reported. This information will remain blinded until each domain/intervention reaches a conclusion.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Time Bucket 1</td>
<td>...</td>
<td>Time Bucket k-1</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-----</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>< 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fixed-duration Corticosteroids
- Shock-based Corticosteroids
- Shock-based Corticosteroids vs. Fixed-duration Corticosteroids
15.3. **The secondary analysis combining corticosteroid arms for the Corticosteroid Domain**

- Population: REMAP-COVID severe state ITT
- Endpoint: Organ-Support Free-Days
- Model: Primary ordinal model
- Factors: All interventions and specified interactions, age, sex, site, time, corticosteroid interventions: control, corticosteroids: combined fixed-duration and shock-based
- Analysis: Conducted by the unblinded SAC

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Corticosteroids will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. No information on the effects of the other domains or their interactions will be reported. This information will remain blinded until each domain/intervention reaches a conclusion.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Corticosteroid use is in the optimal regimen</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.4. **The secondary mortality analysis combining corticosteroid arms for the Corticosteroid Domain**

- Population: REMAP-COVID severe state ITT
- Endpoint: In-Hospital Mortality
- Model: Primary dichotomous model
- Factors: All interventions and specified interactions, age, sex, site, time, corticosteroid interventions: control, corticosteroids: combined fixed-duration and shock-based
- Analysis: Conducted by the unblinded SAC

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Corticosteroids will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. No information on the effects of the other domains or their interactions will be reported. This information will remain blinded until each domain/intervention reaches a conclusion.

The following posterior probabilities will be reported

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Corticosteroid use is in the optimal regimen</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.5. **A secondary analysis restricted to the Corticosteroid Domain ITT**

- Population: Corticosteroid Domain ITT
- Endpoint: Organ-Support Free-Days
- Model: Primary analysis ordinal model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.6. **A secondary analysis restricted to the Corticosteroid Domain Non-negative COVID**

- Population: Corticosteroid Domain Non-negative COVID
- Endpoint: Organ-Support Free-Days
- Model: Primary analysis ordinal model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Fixed-duration Corticosteroids</td>
<td>Shock-based Corticosteroids</td>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.7. **A secondary analysis for the Corticosteroid Domain ITT combining corticosteroid intervention arms.**

- Population: Corticosteroid Domain ITT
- Endpoint: Organ-Support Free-Days
- Model: Primary analysis ordinal model
- Factors: Age, sex, site, time, corticosteroid interventions: control, corticosteroids: combined fixed-duration and shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Corticosteroids will be compared to the control arm. A posterior probability of superiority of 99% will be used to as a statistical trigger for efficacy.

The following posterior probabilities will be reported

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Corticosteroids use is in the optimal regimen</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.8. **A sensitivity analysis restricted to the Corticosteroid Domain ITT with site and time factors removed**

- Population: Corticosteroid Domain ITT
- Endpoint: Organ-Support Free-Days
- Model: Primary analysis ordinal model
- Factors: Age, sex, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.
b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.
c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Fixed-duration Corticosteroids</td>
<td>Shock-based Corticosteroids</td>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.9. A secondary analysis of in-hospital mortality restricted to the Corticosteroid Domain ITT

- Population: Corticosteroid Domain ITT
- Endpoint: In-Hospital Mortality
- Model: Primary dichotomous model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes
a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.
b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.
c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Time Bucket 1</td>
<td>...</td>
<td>Time Bucket k-1</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.10. **A secondary analysis of in-hospital mortality for Corticosteroid Domain Non-negative patients**

- Population: Corticosteroid Domain Non-Negative
- Endpoint: In-Hospital Mortality
- Model: Primary dichotomous model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Time Bucket 1</td>
<td>...</td>
<td>Time Bucket k-1</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-Duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-Duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.11. A sensitivity analysis of in-hospital mortality restricted to the Corticosteroid Domain ITT with factors for site and time removed

- Population: Corticosteroid Domain ITT
- Endpoint: In-Hospital Mortality
- Model: Primary dichotomous model
- Factors: Age, sex, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes
a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.
b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.
c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Time Bucket 1</td>
<td>...</td>
<td>Time Bucket k-1</td>
<td>Fixed-duration Corticosteroids</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-----</td>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.12. A secondary analysis of in-hospital mortality restricted to the Corticosteroid Domain ITT with the steroid interventions combined

- Population: Corticosteroid Domain ITT
- Endpoint: In-Hospital Mortality
- Model: Primary dichotomous model
- Factors: Age, sex, corticosteroid interventions: control, corticosteroids: combined fixed-duration and shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes
a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.
b. Corticosteroids will be compared to the control arm. A posterior probability of superiority of 99% will be used to as a statistical trigger for efficacy.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Corticosteroid use is in the optimal regimen</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.13. **A sensitivity analysis of in-hospital mortality restricted to the Corticosteroid Domain ITT with factors for site and time removed**

- Population: Corticosteroid Domain ITT
- Endpoint: In-Hospital Mortality
- Model: Primary dichotomous model
- Factors: Age, sex, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.14. A secondary analysis of progression to intubation, ECMO, or death, restricted to patients not on MV or ECMO at baseline

- Population: Corticosteroid Domain ITT not on MV or ECMO at baseline.
- Endpoint: Progression to MV, ECMO, or death
- Model: Primary dichotomous model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes
a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.
b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.
c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.15. **A secondary analysis of days-free of vasopressor/inotropes use**

- Population: Corticosteroid Domain ITT.
- Endpoint: Vasopressor/inotropes free-days
- Model: Primary dichotomous model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.16. **A secondary analysis of days-free of ventilation**

- Population: Corticosteroid Domain ITT.
- Endpoint: Ventilation free-days
- Model: Primary dichotomous model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

d. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

e. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

f. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 odds-ratio difference between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.17. **A secondary analysis of length of ICU stay**

- Population: Corticosteroid Domain ITT
- Endpoint: Length of ICU stay
- Model: Primary TTE model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 hazard-ratio between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Hazard-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.18. **A secondary analysis of length of hospital stay**

- Population: Corticosteroid Domain ITT
- Endpoint: Length of Hospital stay
- Model: Primary TTE model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 hazard-ratio between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Hazard-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.19. **A secondary analysis of the WHO Ordinal Scale**

- Population: Corticosteroid Domain ITT
- Endpoint: WHO scale at 14-days
- Model: Primary Ordinal model
- Factors: Age, sex, site, time, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes

a. The primary summary for the domain will be the probability that each intervention is in the optimal regimen. A 99% probability of being in the optimal regimen would hit the domain superiority statistical trigger.

b. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy.

c. The two corticosteroid interventions will be compared for equivalence. A 90% probability of a smaller than 1.2 hazard-ratio between the fixed-duration intervention and the shock-based intervention would hit the statistical trigger for equivalence.

The following posterior probabilities will be reported:

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Shock-based is in the optimal regimen</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
<tr>
<td>Fixed-duration is equivalent to shock-based</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Bucket k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.20. The primary safety analysis for the Corticosteroid Domain

- Population: Corticosteroid Domain ITT
- Endpoint: Serious Adverse Events (SAE)
- Model: Primary dichotomous model
- Factors: age, sex, site, corticosteroid interventions: control, fixed-duration, shock-based
- Analysis: Conducted by the ITSC Analysis Center

Notes
- a. Each intervention will be compared to the control arm. A posterior probability of superiority of 99% will be used as a statistical trigger for efficacy. A posterior probability of 99% superiority of the control will be used for inferiority of the corticosteroids interventions
- b. No information on the effects of the other domains or their interactions will be reported. This information will remain blinded until each domain/intervention reaches a conclusion.

The following posterior probabilities will be reported

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed-duration is superior to control</td>
<td></td>
</tr>
<tr>
<td>Shock-based is superior to control</td>
<td></td>
</tr>
</tbody>
</table>

The following will be reported:

<table>
<thead>
<tr>
<th>Odds-Ratio Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50, 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 80+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock-based Corticosteroids vs. Fixed-duration Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>