Supplementary Online Content

eTable 1A and eTable 1B. Most Common Congenital Anomaly Diagnoses by Organ System

eTable 2. Conditional Survival Probabilities for Children With Trisomy 13 and 18 With 95% Confidence Intervals

eTable 3A and eTable 3B. Comparison of Children With Trisomy 13 and 18 Who Have Shorter and Longer Survival Times

eTable 4A and eTable 4B. Surgeries Performed on Children With Trisomy 13 and 18

eTable 5. Results From Negative Binomial Model Testing Intervention Rates for Trisomy 13 and 18 Over Time Adjusted for Age Distribution of Children at Risk

eTable 6. Survival Data From 12 of the Largest Population-Based Studies of Children With Trisomy 13 or 18

eFigure 1. Cohort Creation

eFigure 2. Birth Prevalence of Trisomy 13 and 18 Over Time

eFigure 3. Survival Duration Histograms for Children With Trisomy 13 and 18

eAppendix. Procedure Hierarchy

This supplementary material has been provided by the authors to give readers additional information about their work.
eTable 1A. Most Common Congenital Anomaly Diagnoses by Organ System Among Children With Trisomy 13

Includes diagnoses reported on more than 5 children. Individual children may carry more than one diagnosis. Table 1 includes the total number of children with diagnoses in each organ system.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Trisomy 13 (N=174)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td></td>
</tr>
<tr>
<td>Patent ductus arteriosus</td>
<td>55 (31.6)</td>
</tr>
<tr>
<td>Atrial septal defect</td>
<td>48 (27.6)</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>48 (27.6)</td>
</tr>
<tr>
<td>Other cardiac anomaly</td>
<td>43 (24.7)</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>16 (9.2)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
</tr>
<tr>
<td>Other intestinal anomaly</td>
<td>7 (4.0)</td>
</tr>
<tr>
<td>Intestinal fixation anomaly</td>
<td>6 (3.4)</td>
</tr>
<tr>
<td>Genitourinary</td>
<td></td>
</tr>
<tr>
<td>Undescended testicles</td>
<td>11 (6.3)</td>
</tr>
<tr>
<td>Cystic kidney</td>
<td>10 (5.7)</td>
</tr>
<tr>
<td>Hydronephrosis</td>
<td>7 (4.0)</td>
</tr>
<tr>
<td>Other renal malformation</td>
<td>7 (4.0)</td>
</tr>
<tr>
<td>Ear, nose and throat</td>
<td></td>
</tr>
<tr>
<td>Cleft palate</td>
<td>46 (26.4)</td>
</tr>
<tr>
<td>Cleft lip and palate</td>
<td>23 (13.2)</td>
</tr>
<tr>
<td>Other face or neck anomaly</td>
<td>6 (3.4)</td>
</tr>
<tr>
<td>Neurologic</td>
<td></td>
</tr>
<tr>
<td>Microcephalus</td>
<td>14 (8.0)</td>
</tr>
<tr>
<td>Holoprosencephaly</td>
<td>13 (7.5)</td>
</tr>
<tr>
<td>Reduction deformity</td>
<td>9 (5.2)</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>7 (4.0)</td>
</tr>
</tbody>
</table>
eTable 1B. Most Common Congenital Anomaly Diagnoses by Organ System Among Children With Trisomy 18
Includes diagnoses reported on more than 5 children. Individual children may carry more than one diagnosis. Table 1 includes the total number of children with diagnoses in each organ system

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Children with diagnosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td></td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>107 (42.1)</td>
</tr>
<tr>
<td>Patent ductus arteriosus</td>
<td>84 (33.1)</td>
</tr>
<tr>
<td>Other cardiac anomaly</td>
<td>72 (28.3)</td>
</tr>
<tr>
<td>Atrial septal defect</td>
<td>48 (18.9)</td>
</tr>
<tr>
<td>Aortic valve insufficiency</td>
<td>18 (7.1)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
</tr>
<tr>
<td>Tracheo-esophageal fistula</td>
<td>12 (4.7)</td>
</tr>
<tr>
<td>Genitourinary</td>
<td></td>
</tr>
<tr>
<td>Other renal malformation</td>
<td>13 (5.1)</td>
</tr>
<tr>
<td>Hypospadias</td>
<td>10 (3.9)</td>
</tr>
<tr>
<td>Undescended testicle</td>
<td>10 (3.9)</td>
</tr>
<tr>
<td>Horseshoe kidney</td>
<td>6 (2.4)</td>
</tr>
<tr>
<td>Ureteral obstruction</td>
<td>6 (2.4)</td>
</tr>
<tr>
<td>Ear, nose and throat</td>
<td></td>
</tr>
<tr>
<td>Cleft palate</td>
<td>10 (3.9)</td>
</tr>
<tr>
<td>Other face or neck anomaly</td>
<td>7 (2.8)</td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>6 (2.4)</td>
</tr>
<tr>
<td>Neurologic</td>
<td></td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>12 (4.7)</td>
</tr>
<tr>
<td>Microcephalus</td>
<td>11 (4.3)</td>
</tr>
<tr>
<td>Reduction deformity</td>
<td>10 (3.9)</td>
</tr>
<tr>
<td>Corpus callosum anomaly</td>
<td>9 (3.5)</td>
</tr>
<tr>
<td>Other brain anomaly</td>
<td>8 (3.1)</td>
</tr>
</tbody>
</table>
eTable 2. Conditional Survival Probabilities for Children With Trisomy 13 and 18 With 95% Confidence Intervals

These probabilities show the likelihood of survival to the next time point (column) among children surviving to the current time point (row). For example, a child with trisomy 13 who is alive at one week (2nd row) has a 75% likelihood of surviving to one month (2nd row, 2nd column) and a 23% likelihood of surviving to 10 years (2nd row, 5th column).

<table>
<thead>
<tr>
<th>Ages</th>
<th>1 week</th>
<th>1 month</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trisomy 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth</td>
<td>53% (45-60%)</td>
<td>42% (35-49%)</td>
<td>20% (14-26%)</td>
<td>15% (10-21%)</td>
<td>13% (8-19%)</td>
</tr>
<tr>
<td>1 week</td>
<td>75% (65-83%)</td>
<td>36% (26-45%)</td>
<td>35% (25-46%)</td>
<td>23% (15-32%)</td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>47% (35-57%)</td>
<td>59% (44-73%)</td>
<td>76% (58-87%)</td>
<td>65% (46-79%)</td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>77% (64-88%)</td>
<td>76% (58-87%)</td>
<td>86% (62-95%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trisomy 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth</td>
<td>50% (44-56%)</td>
<td>35% (29-41%)</td>
<td>13% (9-17%)</td>
<td>11% (8-16%)</td>
<td>10% (6-14%)</td>
</tr>
<tr>
<td>1 week</td>
<td>67% (58-74%)</td>
<td>25% (17-32%)</td>
<td>22% (15-30%)</td>
<td>19% (13-26%)</td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>36% (26-46%)</td>
<td>32% (23-42%)</td>
<td>28% (19-38%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>78% (63-89%)</td>
<td>90% (71-97%)</td>
<td>86% (63-95%)</td>
<td>77% (56-89%)</td>
<td>60% (44-75%)</td>
</tr>
<tr>
<td>1 year</td>
<td>70% (54-83%)</td>
<td>90% (71-97%)</td>
<td>77% (56-89%)</td>
<td>60% (44-75%)</td>
<td></td>
</tr>
<tr>
<td>5 years</td>
<td>90% (71-97%)</td>
<td>86% (63-95%)</td>
<td>77% (56-89%)</td>
<td>60% (44-75%)</td>
<td></td>
</tr>
</tbody>
</table>
eTable 3A. Comparison of Children With Trisomy 13 (N=92) Who Have Shorter and Longer Survival Times

This table excludes children who die within the first week of life. *Cytogenetic status unavailable before 2010. Includes organ systems in which more than 5 children have diagnoses. An individual child may have diagnoses in more than one category.*

<table>
<thead>
<tr>
<th></th>
<th>Children who survived between 7 days and 1 year (N, %)</th>
<th>Children who survived ≥1 year (N, %)</th>
<th>Difference between proportions/means/medians in column 1 and 2 (95% CI)</th>
<th>p-value for difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>58</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>37 (63.8)</td>
<td>20 (58.8)</td>
<td>5.0 (4.7-5.2)</td>
<td>0.64</td>
</tr>
<tr>
<td>Male</td>
<td>21 (36.2)</td>
<td>14 (41.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth weight, kg; mean (SD)</td>
<td>2.6 (0.53)</td>
<td>2.8 (0.77)</td>
<td>-0.20 (-0.50 to 0.11)</td>
<td>0.20</td>
</tr>
<tr>
<td>Cytogenetic status, n (%)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not specified</td>
<td>>52 (>89.7)</td>
<td>25 (73.5)</td>
<td>19.6 (19.4-19.8)</td>
<td>0.01</td>
</tr>
<tr>
<td>Mosaic or translocation</td>
<td><6 (<10.3)</td>
<td>9 (26.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family income quintile, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st or 2nd (lower)</td>
<td>31 (53.5)</td>
<td>15 (45.5)</td>
<td>6.4 (6.2-6.6)</td>
<td>0.46</td>
</tr>
<tr>
<td>3rd, 4th or 5th (higher)</td>
<td>27 (46.6)</td>
<td>18 (54.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children with congenital anomaly diagnoses, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac</td>
<td>17 (29.3)</td>
<td>10 (29.4)</td>
<td>0.1 (-0.1-0.3)</td>
<td>0.99</td>
</tr>
<tr>
<td>Neurologic</td>
<td>8 (13.8)</td>
<td>10 (29.4)</td>
<td>15.6 (15.4-15.8)</td>
<td>0.07</td>
</tr>
<tr>
<td>HEENT</td>
<td>16 (27.6)</td>
<td>10 (29.4)</td>
<td>1.8 (1.6-2.0)</td>
<td>0.85</td>
</tr>
<tr>
<td>Number of organ systems with congenital anomaly diagnoses per child, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None or 1</td>
<td>36 (62.1)</td>
<td>20 (58.8)</td>
<td>3.2 (3-3.5)</td>
<td>0.62</td>
</tr>
<tr>
<td>2 or 3</td>
<td>13 (22.4)</td>
<td>7 (20.6)</td>
<td>1.8 (1.6-2.0)</td>
<td></td>
</tr>
<tr>
<td>4 or more</td>
<td>9 (15.5)</td>
<td>7 (20.6)</td>
<td>-5.1 (-5.3 to -4.9)</td>
<td></td>
</tr>
<tr>
<td>Admissions in first year of life, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12 (20.7)</td>
<td>8 (23.5)</td>
<td>-2.8 (-3.0 to -2.6)</td>
<td>0.39</td>
</tr>
<tr>
<td>2 or 3</td>
<td>27 (46.6)</td>
<td>11 (32.4)</td>
<td>14.2 (14.0-14.4)</td>
<td></td>
</tr>
<tr>
<td>>4</td>
<td>19 (32.8)</td>
<td>15 (44.1)</td>
<td>-11 (-12 to -11)</td>
<td></td>
</tr>
<tr>
<td>Length of stay during admissions in first year of life, days; median (IQR)</td>
<td>6 (1-12)</td>
<td>6 (2-18)</td>
<td>-1 (-2 to 0)</td>
<td>0.17</td>
</tr>
</tbody>
</table>

© 2016 American Medical Association. All rights reserved.
eTable 3B. Comparison of Children With Trisomy 18 (N=128) Who Have Shorter and Longer Survival Times

This table excludes children who die within the first week of life. *Cytogenetic status unavailable before 2010. **Includes organ systems in which more than 5 children have diagnoses. An individual child may have diagnoses in more than one category.*

<table>
<thead>
<tr>
<th></th>
<th>Children who survived between 7 days and 1 year (N, %)</th>
<th>Children who survived ≥1 year (N, %)</th>
<th>Difference between proportions/means/medians in column 1 and 2 (95% CI)</th>
<th>p-value for difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>97</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>78 (80.4)</td>
<td>18 (58.1)</td>
<td>22.3 (22.1-22.6)</td>
<td>0.01</td>
</tr>
<tr>
<td>Male</td>
<td>19 (19.6)</td>
<td>13 (41.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth weight, kg; mean (SD)</td>
<td>2.0 (0.48)</td>
<td>2.5 (0.65)</td>
<td>-0.43 (-0.69 to -0.17)</td>
<td>0.002</td>
</tr>
<tr>
<td>Cytogenetic status, n (%)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not specified</td>
<td>>91 (>93.8)</td>
<td>24 (77.4)</td>
<td>21.5 (21.4-21.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mosaic or translocation</td>
<td><6 (<6.2)</td>
<td>7 (22.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family income quintile, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st or 2nd (lower)</td>
<td>48 (49.5)</td>
<td>17 (56.7)</td>
<td>-8.6 (-8.8 to -8.4)</td>
<td>0.49</td>
</tr>
<tr>
<td>3rd, 4th or 5th (higher)</td>
<td>49 (50.5)</td>
<td>13 (43.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children with congenital anomaly diagnoses, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac</td>
<td>45 (46.4)</td>
<td>13 (41.9)</td>
<td>-4.5 (-4.7 to -4.2)</td>
<td>0.66</td>
</tr>
<tr>
<td>Neurologic</td>
<td>8 (8.3)</td>
<td>7 (22.6)</td>
<td>14.3 (14.2-14.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>Number of organ systems with congenital anomaly diagnoses per child, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None or 1</td>
<td>68 (70.1)</td>
<td>18 (58.1)</td>
<td>12.0 (11.8-12.3)</td>
<td>0.30</td>
</tr>
<tr>
<td>2 or more</td>
<td>29 (29.9)</td>
<td>13 (41.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admissions in first year of life, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>33 (34.0)</td>
<td><6 (<19.4)</td>
<td>24.3 (24.2-24.5)</td>
<td>0.02</td>
</tr>
<tr>
<td>2 or 3</td>
<td>44 (45.4)</td>
<td>>13 (>41.9)</td>
<td>-6.3 (-6.5 to -6.0)</td>
<td></td>
</tr>
<tr>
<td>>4</td>
<td>20 (20.6)</td>
<td>12 (38.7)</td>
<td>-18 (-18 to -18)</td>
<td></td>
</tr>
<tr>
<td>Length of stay during admissions in first year of life, days; median (IQR)</td>
<td>5 (1-14)</td>
<td>5 (2-10)</td>
<td>0 (-1 to 1)</td>
<td>0.95</td>
</tr>
</tbody>
</table>

© 2016 American Medical Association. All rights reserved.
eTable 4A. Surgeries Performed on Children With Trisomy 13 (See Table 2a)

<table>
<thead>
<tr>
<th>Organ system</th>
<th>Trisomy 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td></td>
</tr>
<tr>
<td>Major (n=10)</td>
<td></td>
</tr>
<tr>
<td>Hemi-Fontan</td>
<td></td>
</tr>
<tr>
<td>Pulmonary artery transfer</td>
<td></td>
</tr>
<tr>
<td>Pulmonary artery occlusion</td>
<td></td>
</tr>
<tr>
<td>Thoracic vessel occlusion</td>
<td></td>
</tr>
<tr>
<td>Closed pulmonary valve repair</td>
<td></td>
</tr>
<tr>
<td>Atrial septal defect repair</td>
<td></td>
</tr>
<tr>
<td>Ventricular septal defect repair</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal and genitourinary</td>
<td></td>
</tr>
<tr>
<td>Major and intermediate (n=9)</td>
<td></td>
</tr>
<tr>
<td>Large intestine resection</td>
<td></td>
</tr>
<tr>
<td>Large intestine reattachment</td>
<td></td>
</tr>
<tr>
<td>Colostomy revision</td>
<td></td>
</tr>
<tr>
<td>Repair of anus</td>
<td></td>
</tr>
<tr>
<td>Liver biopsy, open</td>
<td></td>
</tr>
<tr>
<td>Excision of appendix</td>
<td></td>
</tr>
<tr>
<td>Bladder neck repair</td>
<td></td>
</tr>
<tr>
<td>Hypospadias repair</td>
<td></td>
</tr>
<tr>
<td>Minor (n=7)</td>
<td></td>
</tr>
<tr>
<td>Testicular excision</td>
<td></td>
</tr>
<tr>
<td>Orchiopey</td>
<td></td>
</tr>
<tr>
<td>Division of penile adhesions</td>
<td></td>
</tr>
<tr>
<td>Ears, nose, and throat</td>
<td></td>
</tr>
<tr>
<td>Major/intermediate (n=28)</td>
<td></td>
</tr>
<tr>
<td>Maxillary reconstruction</td>
<td></td>
</tr>
<tr>
<td>Cleft palate repair</td>
<td></td>
</tr>
<tr>
<td>Mastoid autograft procurement and placement</td>
<td></td>
</tr>
<tr>
<td>Lip flap</td>
<td></td>
</tr>
<tr>
<td>Tonsillectomy and adenoidectomy</td>
<td></td>
</tr>
<tr>
<td>Adenoidectomy</td>
<td></td>
</tr>
<tr>
<td>Closure fistula of nose</td>
<td></td>
</tr>
<tr>
<td>Nasal repair</td>
<td></td>
</tr>
<tr>
<td>Rhinoplasty</td>
<td></td>
</tr>
<tr>
<td>Minor (n=15)</td>
<td></td>
</tr>
<tr>
<td>Middle ear incision</td>
<td></td>
</tr>
<tr>
<td>Myringotomy with tube placement</td>
<td></td>
</tr>
<tr>
<td>Respiratory and neurologic</td>
<td></td>
</tr>
<tr>
<td>Major (n=13)</td>
<td></td>
</tr>
<tr>
<td>Tracheal fistula repair</td>
<td></td>
</tr>
<tr>
<td>Spinal cord release</td>
<td></td>
</tr>
<tr>
<td>Tracheostomy</td>
<td></td>
</tr>
<tr>
<td>Diaphragmatic repair</td>
<td></td>
</tr>
<tr>
<td>Ventriculoperitoneal shunt placement</td>
<td></td>
</tr>
<tr>
<td>Ventriculoperitoneal shunt replacement</td>
<td></td>
</tr>
<tr>
<td>Ventriculoperitoneal shunt management</td>
<td></td>
</tr>
<tr>
<td>Tracheal dilation</td>
<td></td>
</tr>
<tr>
<td>Revision of tracheostomy</td>
<td></td>
</tr>
<tr>
<td>Minor (n<6)(^a)</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>Major/intermediate (n=21)</td>
<td></td>
</tr>
<tr>
<td>Jejunostomy tube placement</td>
<td></td>
</tr>
<tr>
<td>Gastrostomy tube placement</td>
<td></td>
</tr>
<tr>
<td>Minor (n<6)(^a)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
</tr>
<tr>
<td>Major/intermediate (n=14)</td>
<td></td>
</tr>
<tr>
<td>Pelvic repair with autograft</td>
<td></td>
</tr>
<tr>
<td>Muscle repair, abdominal wall</td>
<td></td>
</tr>
<tr>
<td>Muscle release, legs</td>
<td></td>
</tr>
<tr>
<td>Partial bone excision, hand</td>
<td></td>
</tr>
<tr>
<td>Joint repair, knee endoscopic</td>
<td></td>
</tr>
<tr>
<td>Minor (n<6)(^a)</td>
<td></td>
</tr>
<tr>
<td>Ophthalmologic</td>
<td></td>
</tr>
<tr>
<td>Minor (n=12)(^a)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Fewer than 6 children underwent this category of surgery, so surgical types are not reported.
eTable 4B. Surgeries Performed on children With Trisomy 18
See Table 2b.

<table>
<thead>
<tr>
<th>Trisomy 18</th>
<th>Cardiac</th>
<th>Gastrointestinal and genitourinary</th>
<th>Ears, nose, throat, respiratory and neurologic</th>
<th>Technology</th>
<th>Musculoskeletal and dermatologic</th>
<th>Ophthalmologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td>Major (n=10)</td>
<td>Major (n=8)</td>
<td>Major/intermediate (n=10)</td>
<td>Major/intermediate (n=21)</td>
<td>Major/intermediate (n=12)</td>
<td>Minor (n<6)</td>
</tr>
<tr>
<td>Systemic to pulmonary artery shunt</td>
<td></td>
<td>Gastrochisis repair</td>
<td>Laryngeal repair</td>
<td>Jejunostomy tube placement</td>
<td>Spinal fusion</td>
<td></td>
</tr>
<tr>
<td>Pulmonary artery occlusion</td>
<td></td>
<td>Esophageal reconstruction</td>
<td>Meningocele repair</td>
<td>Gastrostomy tube placement</td>
<td>Internal fixation, foot</td>
<td></td>
</tr>
<tr>
<td>Thoracic vessel occlusion</td>
<td></td>
<td>Esophageal reinforcement</td>
<td>Diaphragmatic repair</td>
<td></td>
<td>Surgical bone repair, leg</td>
<td></td>
</tr>
<tr>
<td>Vena cava plication</td>
<td></td>
<td>Small intestine resection</td>
<td>Tracheal dilation</td>
<td></td>
<td>Surgical bone repair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lip flap</td>
<td></td>
<td>Abdominal wall repair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tonsillectomy and adenoidectomy</td>
<td></td>
<td>Muscle lengthening</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ear reconstruction</td>
<td></td>
<td>Joint repair, knee endoscopic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hearing aid implantation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal and genitourinary</td>
<td>Major (n=8)</td>
<td>Minor (n<6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroschisis repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal reconstruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal reinforcement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small intestine resection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyloroplasty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyloromyotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ears, nose, throat, respiratory and neurologic</td>
<td>Major/intermediate (n=10)</td>
<td>Minor (n=15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laryngeal repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningocele repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragmatic repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracheal dilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lip flap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsillectomy and adenoidectomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear reconstruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing aid implantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>Major/intermediate (n=21)</td>
<td>Minor (n<6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jejunostomy tube placement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrostomy tube placement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and dermatologic</td>
<td>Major/intermediate (n=12)</td>
<td>Minor (n=6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinal fusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal fixation, foot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical bone repair, leg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical bone repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal wall repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle lengthening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint repair, knee endoscopic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophthalmologic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Fewer than 6 children underwent this category of surgery, so surgical types are not reported.
eTable 5. Results From Negative Binomial Model Testing Intervention Rates for Trisomy 13 and 18 Over Time Adjusted for Age Distribution of Children at Risk

<table>
<thead>
<tr>
<th></th>
<th>Adjusted beta coefficient (95% CI), log-person-day at risk</th>
<th>Test statistic (DF)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trisomy 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood ratio omnibus test</td>
<td>-2179.3 (9)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Fiscal year</td>
<td>0.032 (-0.01 to 0.07)</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Age category 1 (0-90 days)</td>
<td>2.9 (2.0-3.7)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 2 (91-180 days)</td>
<td>2.6 (1.6-3.5)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 3 (181-270 days)</td>
<td>2.3 (1.3-3.4)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 4 (271-365 days)</td>
<td>3.0 (2.1-4.0)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 5 (1-2 years)</td>
<td>1.8 (0.9-2.7)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 6 (2-4 years)</td>
<td>1.3 (0.4-2.2)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 7 (4-7 years)</td>
<td>1.0 (0.2-1.9)</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Age category 8 (>7 years)</td>
<td>0 (0-0)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Trisomy 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood ratio omnibus test</td>
<td>-1021.0 (9)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Fiscal year</td>
<td>0.036 (-0.01 to 0.08)</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Age category 1 (0-90 days)</td>
<td>2.4 (1.5-3.3)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 2 (91-180 days)</td>
<td>1.6 (0.4-2.8)</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Age category 3 (181-270 days)</td>
<td>2.4 (1.4-3.5)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 4 (271-365 days)</td>
<td>1.7 (0.4-2.9)</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Age category 5 (1-2 years)</td>
<td>1.7 (0.7-2.6)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age category 6 (2-4 years)</td>
<td>0.9 (-0.1 to 1.8)</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Age category 7 (4-7 years)</td>
<td>0.9 (0-1.8)</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Age category 8 (>7 years)</td>
<td>0 (0-0)</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
eTable 6. Survival Data From 12 of the Largest Population-Based Studies of Children With Trisomy 13 or 18

Children with mosaicism excluded from survival analysis. KM=Kaplan-Meier. NR=Not reported.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location (study years)</th>
<th>Trisomy 13</th>
<th>Trisomy 18</th>
<th>Data source; case ascertainment</th>
<th>Study approach to censoring and cytogenetic status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldstein, 1988<sup>1</sup></td>
<td>Denmark (1977-1986)</td>
<td>N=19</td>
<td>No. surviving to age 1 (KM estimate) 0 (0%)*, Median survival time (variability) 2.5 days (NR)</td>
<td>Danish Central Cytogenetic Register; data based on reports from all cytogenetic labs in Denmark; additionally, access to files from cytogenetic labs directly, pediatrics departments, and two vital statistics registries</td>
<td>Children without death data were censored at end of follow-up. Excluded children with mosaicism from analysis.</td>
</tr>
<tr>
<td>Root, 1994<sup>2</sup></td>
<td>Utah (1979-1988)</td>
<td>No. surviving to age 1 (KM estimate) 0 (0%)*, Median survival time (variability) 6 days (NR)</td>
<td>Data from the two cytogenetic labs in Utah that perform all chromosomal studies.</td>
<td>Followed-up all patient statuses. Cytogenetic status not discussed.</td>
<td></td>
</tr>
<tr>
<td>Nembhard, 2001<sup>3</sup></td>
<td>Texas (1995-1997)</td>
<td>N=27</td>
<td>No. surviving to age 1 (KM estimate) 2 (7.4%), Median survival time (variability) NR (NR)</td>
<td>Texas Birth Defects Monitoring Division registry; no information on ascertainment</td>
<td>Did not examine survival beyond one year; children without death certificate during first year presumed alive. Cytogenetic status not discussed.</td>
</tr>
<tr>
<td>Brewer, 2002<sup>3</sup></td>
<td>Scotland (1974-1997)</td>
<td>N=32</td>
<td>No. surviving to age 1 (KM estimate) 1 (3.0%), Median survival time (variability) 8.5 days (range: 1-412)</td>
<td>Glasgow Register of Congenital Anomalies (1974-1989); registry staff verified cases for which notification was received; Scottish Trisomy Register (1989-1997);</td>
<td>Reported maximum survival (412 days in trisomy 13 and 975 days in trisomy 18), so presumably had confirmation of death for entire cohort. Excluded children with mosaicism from analysis.</td>
</tr>
</tbody>
</table>
eTable 6. Survival Data From 12 of the Largest Population-Based Studies of Children With Trisomy 13 or 18

Children with mosaicism excluded from survival analysis. KM=Kaplan-Meier. NR=Not reported.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location (study years)</th>
<th>No. surviving to age 1 (KM estimate)</th>
<th>Median survival time (variability)</th>
<th>No. surviving to age 1 (KM estimate)</th>
<th>Median survival time (variability)</th>
<th>Data source; case ascertainment</th>
<th>Study approach to censoring and cytogenetic status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasmussen 2003[^5]</td>
<td>Atlanta registry (1968-1999)</td>
<td>70 (8.6%)*</td>
<td>7 days (95% CI: 3-15)</td>
<td>114 (8.4%)*</td>
<td>14.5 days (95% CI: 8-28)</td>
<td>Metropolitan Atlanta Congenital Defects Program; registry abstractors obtain data from medical charts and cytogenetic labs</td>
<td>Assumed patients without death data to be living at study end. Excluded children with mosaicism from analysis.</td>
</tr>
<tr>
<td>United States death files data (1979-1997)</td>
<td>United States (1979-1997)</td>
<td>5515 (5.6%)</td>
<td>10 days (IQR: 1-30)</td>
<td>8750 (5.6%)</td>
<td>10 days (IQR: 2-60)</td>
<td>Multiple-Cause Mortality Files; data abstracted from US death certificates</td>
<td>Ascertainment based on death, not birth; prevalence estimates were higher than in prior birth-based studies. Children with mosaicism included in analysis.</td>
</tr>
<tr>
<td>Vendola, 2010[^7]</td>
<td>Texas (1999-2003)</td>
<td>130 (3.0%)*</td>
<td>4.5 days (NR)</td>
<td>184 (3.0%)*</td>
<td>7 days (NR)</td>
<td>Texas Birth Defects Registry; registry staff visit medical facilities routinely to identify infants with birth defects</td>
<td>Cases without death data excluded from survival analysis. If excluded cases had survived 1 year, survival probabilities would have been 10% and 11% for trisomy 13 and 18, respectively. Did not describe survival beyond 1 year.</td>
</tr>
</tbody>
</table>
eTable 6. Survival Data From 12 of the Largest Population-Based Studies of Children With Trisomy 13 or 18

Children with mosaicism excluded from survival analysis. KM=Kaplan-Meier. NR=Not reported.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location (study years)</th>
<th>Trisomy 13</th>
<th>Trisomy 18</th>
<th>Data source; case ascertainment</th>
<th>Study approach to censoring and cytogenetic status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irving, 2011*</td>
<td>England (1985-2007)</td>
<td>NR</td>
<td>NR</td>
<td>Northern Congenital Abnormality Survey; survey completed by ultrasonographers, physicians, cytogeneticists</td>
<td>Did not describe details of survival data except that it was available to one year. Excluded children with mosaicism from analysis.</td>
</tr>
<tr>
<td>Wang, 2011*</td>
<td>New York (1983-2006)</td>
<td>NR</td>
<td>NR</td>
<td>Congenital Malformations Registry of the New York State Department of Health; hospitals required to report children diagnosed up to age two, and additional cases are identified through record and on-site audits.</td>
<td>Assumed children without New York state death certificates were alive at end of follow-up. Cytogenetic status not discussed.</td>
</tr>
<tr>
<td>Wu, England</td>
<td>120 10 10 days</td>
<td>309 (7.8%)*</td>
<td>14 days</td>
<td>National Down</td>
<td>Excluded 31 cases of</td>
</tr>
</tbody>
</table>
eTable 6. Survival Data From 12 of the Largest Population-Based Studies of Children With Trisomy 13 or 18
Children with mosaicism excluded from survival analysis. KM=Kaplan-Meier. NR=Not reported.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location (study years)</th>
<th>Trisomy 13</th>
<th>Trisomy 18</th>
<th>Data source; case ascertainment</th>
<th>Study approach to censoring and cytogenetic status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. surviving to age 1</td>
<td>Median survival time</td>
<td>No. surviving to age 1</td>
<td>Median survival time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(KM estimate) (variability)</td>
<td></td>
<td>(KM estimate) (variability)</td>
<td></td>
</tr>
</tbody>
</table>
eTable 6. Survival Data From 12 of the Largest Population-Based Studies of Children With Trisomy 13 or 18

Children with mosaicism excluded from survival analysis. KM=Kaplan-Meier. NR=Not reported.

525 children meeting study inclusion criteria:
- Valid encoded health card number
- ICD code for trisomy on hospital record during first year of life
- Admission for trisomy between April 1, 1991 and March 31, 2012

97 children excluded from the study:
- 49 were not Ontario residents
- 6 did not have a birth or hospitalization record in first seven days of life or had listed birth date occurring after discharge date
- 7 had an uncertain genetic diagnosis due to equal numbers of hospital admissions with diagnosis codes for trisomy 13 and 18
- 35 had a discharge diagnosis code for trisomy 21 on a hospital record

428 children included in the study:
- 174 children with trisomy 13
- 254 children with trisomy 18
Figure 2. Birth Prevalence of Trisomy 13 and 18 Over Time

The lines are loess curves.

Trisomy 13 birth prevalence over time

- Rate per 100,000 live births
- Fiscal year

Trisomy 18 birth prevalence over time

- Rate per 100,000 live births
- Fiscal year
eFigure 3. Survival Duration Histograms for Children With Trisomy 13 and 18

Survival duration of children with trisomy 13

- Days of survival: <=7, 8-30, 31-90, 91-180, 181-364, >=365
- Percent of cohort: 0, 10, 20, 30, 40, 50, 60

Survival duration of children with trisomy 18

- Days of survival: <=7, 8-30, 31-90, 91-180, 181-364, >=365
- Percent of cohort: 0, 10, 20, 30, 40, 50
eAppendix. Procedure Hierarchy

TRISOMY 13
Cardiac procedures
- **Major**
 - Hemi-Fontan
 - Pulmonary artery transfer
 - Pulmonary artery occlusion
 - Thoracic vessel occlusion
 - Closed pulmonary valve repair
 - Atrial septal defect repair
 - Ventricular septal defect repair
Gastrointestinal procedures
- **Major**
 - Large intestine resection
 - Large intestine reattachment
 - Colectomy revision
 - Repair of anus
 - Liver biopsy, open
- **Intermediate**
 - Excision of appendix
- **Minor**
 - Umbilical hernia repair
 - Paracentesis with tube placement, open
 - Operative inspection of abdomen
Genitourinary procedures
- **Major**
 - Bladder neck repair
 - Hypospadias repair
- **Minor**
 - Testicular excision
 - Orchiopexy
 - Division of penile adhesions
Ear, nose and throat procedures
- **Major**
 - Maxillary reconstruction
 - Cleft palate repair
 - Mastoid autograft procurement and placement
 - Lip flap
 - Tonsillectomy and adenoidectomy
 - Adenoidectomy
 - Closure fistula of nose
 - Nasal repair
 - Rhinoplasty
- **Minor**
 - Middle ear incision
 - Myringotomy with tube placement
Musculoskeletal procedures
- **Major**
 - Pelvic repair with autograft
- **Intermediate**
 - Muscle repair, abdominal wall
 - Muscle release, legs
 - Partial bone excision, hand
 - Joint repair, knee endoscopic
 - **Minor (not reported because <6)**
Ophthalmological procedures
- **Minor (not reported because <6)**
Respiratory and neurologic procedures
- **Major**
 - Tracheal fistula repair
 - Spinal cord release
 - Tracheostomy
 - Diaphragmatic repair
 - Ventriculoperitoneal shunt placement
 - Ventriculoperitoneal shunt replacement
 - Ventriculoperitoneal shunt management
- **Intermediate**
 - Tracheal dilation
 - Revision of tracheostomy
 - **Minor (not reported because <6)**
Technology
- **Major**
 - Jejunostomy tube placement
- **Intermediate**
 - Gastrostomy tube placement
 - **Minor (not reported because <6)**
TRISOMY 18
Cardiac procedures
- **Major**
 - Systemic to pulmonary artery shunt
 - Pulmonary artery occlusion
 - Thoracic vessel occlusion
 - Vena cava plication
Gastrointestinal and genitourinary procedures
- **Major**
 - Gastroschisis repair
 - Esophageal reconstruction
 - Esophageal reinforcement
 - Small intestine resection
 - Pyloroplasty
 - Pyloromyotomy
- **Minor (not reported because <6)**
HEENT, neurologic, and respiratory procedures
- **Major**
 - Laryngeal repair
 - Meningocele repair
 - Diaphragmatic repair
- **Intermediate**
 - Tracheal dilation
 - Lip flap
 - Tonsillectomy and adenoidectomy
 - Ear reconstruction
Hearing Aid Implantation

- **Minor (not reported because <6)**

Musculoskeletal and Ophthalmologic Procedures

Major
- Spinal fusion
- Internal fixation, foot
- Surgical bone repair, leg

Intermediate
- Surgical bone repair
- Muscle repair, abdominal wall
- Muscle lengthening
- Joint repair, knee endoscopic

Technology

Major
- Jejunostomy tube placement

Intermediate
- Gastrostomy tube placement
- Gastrostomy tube placement for suction

Minor (not reported because <6)

Ophthalmological Procedures

Minor (not reported because <6)