Electronic Signature Page

Full Title
Randomised, double-blind, parallel-group, placebo-controlled study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with an acetylcholinesterase inhibitor; Study 3

Short Title
14863A - Statistical Analysis Plan

Study Number
14863A

The following persons have electronically signed this document

<table>
<thead>
<tr>
<th>Server Date and Time</th>
<th>Signed by</th>
<th>Reason for Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-Apr-2016 09:50:56</td>
<td>KRWI Kristian Madsen Windfeld</td>
<td>Biostatistic Approval</td>
</tr>
<tr>
<td>29-Apr-2016 10:25:04</td>
<td>RP Ravinder Phul</td>
<td>Clinical Approval</td>
</tr>
<tr>
<td>29-Apr-2016 15:33:39</td>
<td>AKTH Anna Karina Trap Huusom</td>
<td>Management Approval</td>
</tr>
</tbody>
</table>

Final: Version 1.0
PLUTO ID: CLI_00651838
Statistical Analysis Plan

Randomised, double-blind, parallel-group, placebo-controlled study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with an acetylcholinesterase inhibitor; Study 3

Idalopirdine

Study No.: 14863A
Sponsor: H. Lundbeck A/S (Lundbeck)
2500 Valby (Copenhagen), Denmark
Biostatistician: Ole Michael Lemming, Biostatistics
SAP date: 28 April 2016

This document is the property of H. Lundbeck A/S and H. Lundbeck A/S is the holder of any and all related intellectual property rights, including, but not limited to, copyrights. This document is confidential. It is not to be copied or distributed to other parties without prior written authorisation from H. Lundbeck A/S.
Table of Contents

List of Panels...6

List of Abbreviations and Definitions of Terms ...7

1 Objectives..9
 1.1 Primary Objective..9
 1.2 Secondary Objective..9
 1.3 Other Objective...9
 1.4 Safety Objective...9

2 Study Design..9

3 Endpoints...11
 3.1 Primary Endpoint..11
 3.2 Key Secondary Endpoints...11
 3.3 Secondary Endpoints..11
 3.4 Safety Endpoints..12

4 Analysis Sets ..12

5 Descriptive Statistics..13

6 Patient Disposition ...13
 6.1 Summary of Patient Disposition..13
 6.2 Withdrawal..13

7 Demographics and Other Baseline Characteristics..14

8 Recent and Concomitant Medication..14

9 Exposure and Compliance..15

10 Efficacy...16
 10.1 General Efficacy Analysis Methodology..16
 10.2 Analysis Methodology for the Primary Endpoint...18
 10.2.1 Analysis of the Primary Endpoint..18
 10.2.2 Rationale for Selected Analysis Method for the Primary Endpoint..........................19
 10.2.3 Subgroup Analyses and Model Assumptions for Analysis of the Primary Endpoint...19
 10.2.4 Sensitivity Analyses of the Primary Endpoint..20
 10.3 Analysis Methodology for the Key Secondary Endpoints..21
 10.3.1 Analysis of the Key Secondary Endpoints..21
 10.3.2 Rationale for Selected Analysis Method for the Key Secondary Endpoints..............21
 10.3.3 Subgroup Analyses and Model Assumptions for Analysis of the Key Secondary Endpoints...21
 10.3.4 Sensitivity Analyses of the Key Secondary Endpoints...22
 10.4 Testing Strategy...22
 10.5 Analysis of the Secondary Endpoints..22

11 Safety..23
 11.1 Adverse Events...23
 11.1.1 General Methodology for Adverse Events...23
11.12 Coding of Adverse Events...24
11.13 Classification of Adverse Events ..24
11.14 All Adverse Events..24
11.15 Pre-treatment Adverse Events..24
11.16 Treatment-emergent Adverse Events ..25
11.17 Deaths...25
11.18 Serious Adverse Events...25
11.19 Adverse Events Leading to Withdrawal or Dose Reduction25
11.10 Adverse Events of Special Interest..25
11.2 General Methodology for Other Safety Data.................................26
11.3 Clinical Safety Laboratory Test Data ..27
11.3.1 Data Presentation ...27
11.3.2 Urinalysis ...27
11.3.3 Evaluation of Potential Drug-induced Liver Injury (DILI)28
11.4 Vital Signs and Weight...29
11.5 ECGs ..30
11.5.1 Data Presentation ...30
11.6 Neurological Examinations ..30
11.7 Other Safety Endpoints..31
11.7.1 Columbia-Suicide Severity Rating Scale (C-SSRS)31
12 Pharmacokinetic/Pharmacodynamic Analyses32
13 Pharmacoeconomic Analyses ..32
14 Interim Analyses ..33
15 Sample Size Considerations ...33
16 Data and Analysis Standards and Statistical Software34
17 Changes to Analyses Specified in the Protocol34
18 Details on Data Handling ..35
18.1 Definition of Baseline ..35
18.2 Derived Variables ..35
18.2.1 MMSE Total Score and MMSE stratum35
18.2.2 ADAS-Cog Total Score ..36
18.2.3 ADCS-ADL 23 Total Score, Basic ADCS-ADL 23, and Instrumental ADCS-ADL 23 ...38
18.2.4 ADAS-Cog and ADCS-ADL 23 Composite Score42
18.2.5 NPI Total Score ...42
18.2.6 NPI Caregiver Distress Total Score ..42
18.2.7 EQ-5D Utility Score ...43
18.2.8 Dependence Level Score ..43
18.3 Assigning Data to Visits ..45
18.3.1 Rating Scales ...45
18.3.2 Safety Variables ..46
18.4 Handling of Missing or Incomplete Dates/Times46
18.4.1 IMP Start- and Stop Dates ..46
18.4.2 Base Treatment Start Date ..46
18.4.3 Date of Alzheimer Diagnosis ...47
18.4.4 Withdrawal Date ..47
18.4.5 Medication Start- and Stop Dates ..47
18.4.6 Adverse Event Start- and Stop Dates ...47
18.5 Compliance ...48
18.6 Grouping of Countries or Sites ...48

References ...49
Appendices

Appendix I Statistical Analysis Plan Authentication and Authorisation50
Appendix II Study Flow Chart ...52
Appendix III SAS® Code...56
Appendix IV PCS Criteria..59
List of Panels

<table>
<thead>
<tr>
<th>Panel</th>
<th>Study Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel 1</td>
<td>Study Design</td>
<td>10</td>
</tr>
<tr>
<td>Panel 2</td>
<td>Endpoints</td>
<td>17</td>
</tr>
<tr>
<td>Panel 3</td>
<td>Graphical Presentations for the Clinical Safety Laboratory Tests</td>
<td>27</td>
</tr>
<tr>
<td>Panel 4</td>
<td>Graphical Presentations for Vital Signs and Weight</td>
<td>30</td>
</tr>
<tr>
<td>Panel 5</td>
<td>Graphical Presentations for ECG Parameters</td>
<td>30</td>
</tr>
<tr>
<td>Panel 6</td>
<td>C-SSRS Items</td>
<td>32</td>
</tr>
<tr>
<td>Panel 7</td>
<td>Definition of ADAS-Cog Item Scores</td>
<td>37</td>
</tr>
<tr>
<td>Panel 8</td>
<td>Definition of ADCS-ADL\textsubscript{23} Item Scores</td>
<td>39</td>
</tr>
<tr>
<td>Panel 9</td>
<td>Items Dependence Scale</td>
<td>44</td>
</tr>
<tr>
<td>Panel 10</td>
<td>Visit Windows for assessments collected at Visit 3, Visit 5, and Visit 7</td>
<td>45</td>
</tr>
<tr>
<td>Panel 11</td>
<td>Visit Windows for assessments collected at Visit 5 and Visit 7</td>
<td>45</td>
</tr>
<tr>
<td>Panel 12</td>
<td>Visit Windows for Clinical Safety Data</td>
<td>46</td>
</tr>
<tr>
<td>Panel 13</td>
<td>Handling of Missing Dates in Classification of Medications</td>
<td>47</td>
</tr>
</tbody>
</table>
List of Abbreviations and Definitions of Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AChEI</td>
<td>acetylcholinesterase inhibitor</td>
</tr>
<tr>
<td>aCRF</td>
<td>annotated case report form</td>
</tr>
<tr>
<td>ADAS-Cog</td>
<td>Alzheimer’s Disease Assessment Scale, cognitive subscale</td>
</tr>
<tr>
<td>ADCS-ADL₂₃</td>
<td>Alzheimer’s Disease Cooperative Study – Activities of Daily Living Inventory (23-items version)</td>
</tr>
<tr>
<td>ADCS-CGIC</td>
<td>Alzheimer’s Disease Cooperative Study – Clinical Global Impression of Change</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>analysis of covariance</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>APRS</td>
<td>all-patients-randomised set</td>
</tr>
<tr>
<td>APTS</td>
<td>all-patients-treated set</td>
</tr>
<tr>
<td>ATC</td>
<td>anatomical therapeutic chemical</td>
</tr>
<tr>
<td>AUC</td>
<td>area under curve</td>
</tr>
<tr>
<td>BILI</td>
<td>total serum bilirubin</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>Bpm</td>
<td>beats per minute</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>DMC</td>
<td>Data Monitoring Committee</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>eCRF</td>
<td>electronic case report form</td>
</tr>
<tr>
<td>eDISH</td>
<td>evaluation of drug-induced serious hepatotoxicity</td>
</tr>
<tr>
<td>EOSLE</td>
<td>B-eosinophils/leucocytes</td>
</tr>
<tr>
<td>FAS</td>
<td>Full Analysis Set</td>
</tr>
<tr>
<td>FDA</td>
<td>United States Food and Drug Administration</td>
</tr>
<tr>
<td>GGT</td>
<td>gamma glutamyl transferase</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate</td>
</tr>
<tr>
<td>IMP</td>
<td>investigational medicinal product</td>
</tr>
<tr>
<td>INR</td>
<td>international normalised ratio of prothrombin time</td>
</tr>
<tr>
<td>MAR</td>
<td>missing at random</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov Chain Monte Carlo</td>
</tr>
<tr>
<td>MedDRA</td>
<td>Medical Dictionary for Regulatory Activities</td>
</tr>
<tr>
<td>MI</td>
<td>multiple imputation</td>
</tr>
<tr>
<td>MMRM</td>
<td>mixed model for repeated measurements</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini Mental State Examination</td>
</tr>
<tr>
<td>NPI</td>
<td>Neuropsychiatric Inventory</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>OC</td>
<td>observed cases</td>
</tr>
<tr>
<td>PBO</td>
<td>Placebo</td>
</tr>
<tr>
<td>PCS</td>
<td>potentially clinically significant</td>
</tr>
<tr>
<td>PMM</td>
<td>pattern mixture model</td>
</tr>
<tr>
<td>PR</td>
<td>specific ECG interval describing atrioventricular conduction</td>
</tr>
<tr>
<td>PYE</td>
<td>patient years of exposure</td>
</tr>
<tr>
<td>REML</td>
<td>restricted maximum likelihood</td>
</tr>
<tr>
<td>QRS</td>
<td>specific ECG interval describing ventricular depolarisation</td>
</tr>
<tr>
<td>QT</td>
<td>specific ECG interval describing ventricular depolarisation/repolarisation</td>
</tr>
<tr>
<td>QTcB</td>
<td>heart-rate corrected QT interval using Bazett’s correction formula</td>
</tr>
<tr>
<td>QTcF</td>
<td>heart-rate corrected QT interval using Fridericia’s correction formula</td>
</tr>
<tr>
<td>RUD Lite</td>
<td>Resource Utilisation in Dementia Lite</td>
</tr>
<tr>
<td>SAE</td>
<td>serious adverse event</td>
</tr>
<tr>
<td>SAP</td>
<td>Statistical Analysis Plan</td>
</tr>
<tr>
<td>SAS</td>
<td>statistical software package from the SAS® Institute</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SOC</td>
<td>system organ class</td>
</tr>
<tr>
<td>TEAE</td>
<td>treatment-emergent adverse event</td>
</tr>
<tr>
<td>WHO-DD</td>
<td>World Health Organization Drug Dictionary</td>
</tr>
</tbody>
</table>
1 Objectives

1.1 Primary Objective
To establish the efficacy of idalopirdine as adjunctive therapy to acetylcholinesterase inhibitors (AChEIs) for symptomatic treatment of patients with mild-moderate Alzheimer’s disease.

1.2 Secondary Objective
To investigate the effect of idalopirdine as adjunctive therapy to AChEIs on neuropsychiatric symptoms in patients with mild-moderate Alzheimer’s disease.

1.3 Other Objective
To explore population pharmacokinetics (PK)/pharmacodynamics (PD).

1.4 Safety Objective
To evaluate the safety and tolerability of idalopirdine as adjunctive therapy to AChEIs in patients with mild-moderate Alzheimer’s disease.

2 Study Design
This is an interventional multi-national, multi-site, randomised, double-blind, parallel-group, placebo-controlled study of idalopirdine as adjunctive therapy to AChEIs (donepezil, rivastigmine or galantamine) in patients with mild-moderate Alzheimer’s disease (AD).

The total study duration per patient from Baseline to end of follow-up was approximately 28 weeks. The study included the following periods:

- 2-week screening period
- 24-week double-blind (idalopirdine 60 mg/day or placebo) treatment period (Visit 2 to Visit 7) as add-on to base AChEI treatment (donepezil 10 mg/day, rivastigmine or galantamine (the patient’s individual maintenance daily dose))
- 4-week safety follow-up period.

The study design is presented in Panel 1 and the scheduled assessments are summarised in Appendix II (study flow chart).
Panel 1 Study Design

Patients were randomised symmetrically at Visit 2 (Baseline) to one of two treatment groups: idalopirdine 60 mg/day or placebo. Approximately 720 patients were planned to be randomised: 360 in each treatment group. Randomisation was via a centralised randomisation system (Interactive Voice Response System [IVRS]). The randomisation strategy was based on a design with two stratification criteria: Mini Mental State Exam (MMSE <19 | ≥19) and base treatment (donepezil | rivastigmine/galantamine). Sites were selected to ensure an adequate representation of patients in both base treatment strata.

Note on the study design: The dose of Lu AE58054 could be decreased once during the trial to 30 mg if 60 mg/day was not well tolerated in the opinion of the investigator. If tolerability issues were resolved and if clinically indicated, according to the judgement of the investigator, the dose of Lu AE58054 could be increased again to 60 mg/day. Dose changes were permitted until Week 12 (Visit 5) only, after which the dose should be kept fixed for the remainder of the study. Only one dose decrease and one subsequent dose increase was permitted and could be done at a scheduled or an unscheduled visit.

The group of patients who withdrew from the treatment period will be described as withdrawn from treatment. The complementary group will be described as completed treatment.

The study included a follow-up of withdrawn patients, except for those who withdrew their consent, 4 weeks after the Withdrawal Visit (Withdrawal Follow-up Visit), and at the projected time of the primary endpoint (Drop-out Retrieval Visit) if they withdrew at or after...
Visit 6 (Week 18). The Withdrawal Follow-up and Drop-out Retrieval Visits included collection of data to address the primary and key secondary endpoints. The follow-up efficacy data will only be used for sensitivity analyses.

3 Endpoints

3.1 Primary Endpoint

The primary endpoint addresses the primary objective of the study.

- **Cognition:**
 - Change from Baseline to Week 24 in Alzheimer’s disease Assessment Scale – cognitive subscale (ADAS-Cog) total score

3.2 Key Secondary Endpoints

The key secondary endpoints address the primary objective of the study.

- **Global impression:**
 - Alzheimer’s disease Cooperative Study – Clinical Global Impression of Change (ADCS-CGIC) score at Week 24

- **Function:**
 - Change from Baseline to Week 24 in Alzheimer’s disease Cooperative Study – Activities of Daily Living Inventory (ADCS-ADL23) total score

3.3 Secondary Endpoints

The secondary endpoints address the secondary objective, are supportive of the primary objective or address other objectives of the study.

- **Endpoints addressing the secondary objective:**
 - Change from Baseline to Week 24 in Neuropsychiatric Inventory (NPI) total score
 - Change from Baseline in NPI single item scores at Week 24
 - Change from Baseline to Week 24 in NPI single items in patients with an item score of at least 2 at Baseline
 - Emergence of individual NPI items (score ≥ 3) at Week 24. The analysis will be based on patients with an item score < 3 at Baseline
 - Change from Baseline to Week 24 in NPI caregiver distress total score

- **Endpoints that are supportive of the primary objective:**
 - Clinical response endpoint at Week 24 (ADAS-Cog change ≤ -4 and ADCS-ADL23 change ≥ 0 and ADCS-CGIC ≤ 4)
 - Clinical response endpoint at Week 24 where response is defined using cut-offs of ≤ -3, ≤ -2, ≤ -1 for ADAS-Cog change, ADCS-ADL23 change ≥ 0 and ADCS-CGIC ≤ 4)
- Clinical worsening at Week 24 (ADAS-Cog change ≥ 4 and ADCS-ADL23 change < 0 and ADCS-CGIC > 4)
- Change from Baseline to Week 24 in Mini Mental State Examination (MMSE) total score
- Change from Baseline to Week 24 in EQ-5D utility score
- Change from Baseline to Week 24 in EQ-5D VAS
- Area under curve (AUC) from Baseline to week 24 for the changes from Baseline in ADAS-Cog total score
- AUC from Baseline to Week 24 for the changes from Baseline in ADCS-ADL23 total score
- AUC from Baseline to week 24 for the ADCS-CGIC minus four (as ADCS-CGIC is itself an assessment of changes, i.e. no change in health state corresponds to a score of 4 on the original scale)
- Change from Baseline to Week 24 in ADAS-Cog and ADCS-ADL23 composite score
- AUC from Baseline to Week 24 for the changes from Baseline in ADAS-Cog and ADCS-ADL23 composite score
- Change from Baseline to Week 24 in Basic ADCS-ADL23
- Change from Baseline to Week 24 in Instrumental ADCS-ADL23
- Endpoints addressing other objectives:
 - Plasma concentrations of idalopirdine and base treatment

3.4 Safety Endpoints

Endpoints addressing the safety objectives:
- Adverse events
- Absolute values and changes from Baseline in clinical safety laboratory tests, vital signs, weight, and ECG parameters
- Potentially clinically significant clinical safety laboratory test values, vital signs, weight (change), and ECG parameter values
- C-SSRS

4 Analysis Sets

The classification will be based on IMP intake and post-baseline assessments of the primary efficacy variable (ADAS-Cog) in the treatment period.

The sets of patients to be analysed are defined as follows:
- **All-patients-randomised set (APRS)** – all randomised patients
- **All-patients-treated set (APTS)** – all patients in the APRS who took at least one dose of IMP
• **Full-analysis set (FAS)** – all patients in the APTS who had a valid Baseline assessment and at least one valid post-baseline assessment of the primary efficacy variable

The patients and data will be classified into the analysis sets according to the definitions above after the study database has been released but before the blind has been broken.

If a patient received the incorrect IMP (the IMP he/she was not randomised to), the patient will be included in the randomised treatment group but information about the actual treatment and the start- and stop date(s) when incorrect IMP was received will be included as a footnote in output where relevant. Additional listing will also be prepared if needed.

5 Descriptive Statistics

Unless otherwise specified, summary statistics (n, and at a minimum arithmetic mean, standard deviation [SD], median, minimum and maximum) will be presented for continuous variables; counts and, if relevant, percentages will be presented for categorical variables.

Unless otherwise specified, data listings will include treatment group, site, patient screening number, MMSE stratum, base treatment stratum, sex, age at inclusion, race and ethnicity.

6 Patient Disposition

6.1 Summary of Patient Disposition

Patient disposition will be summarised by treatment group and include the number of patients in each analysis set defined in chapter 4, and the number of patients in the APTS who completed or withdrew from treatment.

The disposition summary will be repeated by MMSE stratum and base treatment stratum.

6.2 Withdrawal

The number of patients who withdrew from treatment will be summarised by treatment group and primary reason for withdrawal as well as by treatment group and all reasons for withdrawal. Reasons for withdrawal collected in the study were adverse events, protocol violation, withdrawal of consent, lost to follow-up and other reasons.

Patients who withdrew from treatment will be listed and the listing will include the number of days in the study until withdrawal from treatment, exposure to IMP (see definition in chapter 9), the primary reason for withdrawal, and all reasons for withdrawal.

The cumulative number of withdrawals from treatment at Visit Weeks 4, 8, 12, 18, and 24 for each primary reason of withdrawal will be presented by treatment group. The Withdrawal Visit will be assigned to the closest scheduled visit not attended in the treatment period.
Kaplan-Meier plots of time to withdrawal from treatment will be presented by treatment group. The time will be calculated from the date of first dose of IMP to the date of completion or withdrawal from treatment. Patients who completed treatment will be regarded as censored.

Nelson-Aalen cause specific cumulative hazard plots of time to withdrawal from treatment will be generated for each primary reason. The time will be calculated from the date of first dose of IMP to the date of completion or withdrawal from treatment.

All tables, graphs, and listings will be based on the APTS.

All analyses will be repeated by MMSE stratum and base therapy stratum.

7 Demographics and Other Baseline Characteristics

Demographics (age, age groups [<65, 65-74, 75-84 and ≥85 years], sex, ethnicity, and race), patient characteristics (weight, height, BMI, smoking, other nicotine use, alcohol use, years of education, marital status, and ApoE positive [ApoE genotype E2/E4, E3/E4, and E4/E4]), Alzheimer’s disease, base treatment stratum, family history of AD (MMSE stratum, MMSE total score at Baseline, years since diagnosis [see paragraph 18.4.3], previous treatment with memantine, previous treatment with an acetylcholinesterase inhibitor (AChEI), participation in randomized Alzheimer’s disease trials, duration of base treatment and number of first degree relatives with a diagnosis of Alzheimer’s disease), and efficacy variables at Baseline will be summarised by treatment group.

The medical, neurological, and psychiatric histories, as well as concurrent medical, neurological, or psychiatric disorders will be coded using the Medical Dictionary for Regulatory Activities (MedDRA), Version 17.1 or later, and summarised by treatment group.

A medical, neurological, or psychiatric history is a disorder that ended prior to the Screening Visit. A concurrent medical, neurological, or psychiatric disorder is a disorder that is ongoing at the Screening Visit.

Demographics and other Baseline characteristics will be summarised based on the APTS.

All summaries will be repeated by MMSE stratum and base treatment stratum.

8 Recent and Concomitant Medication

Recent and concomitant medication will be coded using the WHO Drug Dictionary (WHO-DD), Version 12.1 or later.

Medications will be classified according to start- and stop time(s) and summarised by anatomical therapeutic chemical (ATC) code, generic drug name, and treatment group:
- Medication discontinued prior to first dose of IMP
- Concomitant medication continued after first dose of IMP
Concomitant medication started at or after first dose of IMP and at or before the Completion/Withdrawal Visit
Treatment for Alzheimer’s disease (identified by ATC code N06D) started after the Withdrawal Visit in withdrawn patients

For details about handling of missing dates, see paragraphs 18.4.1 (IMP start date) and 18.4.5 (medication start- and stop dates).

The tables will be based on the APTS.

9 Exposure and Compliance

Exposure to IMP will be defined as:
\[
\text{date of last dose of IMP} - \text{date of first dose of IMP} + 1.
\]

For handling of missing IMP start- or stop date(s), see paragraph 18.4.1.

Exposure to IMP will be summarised by treatment group using descriptive statistics, and will include the patient years of exposure (PYE) to IMP. PYE will be calculated as the sum of the number of days of exposure to IMP for all patients, divided by 365.25 days.

In addition, exposure to IMP will be categorised into intervals (1 to 28, 29-56, 57-84, 85-126, and 127-168 days) and summarised by treatment group.

Non-compliance days will be defined as days on which no IMP has been taken.

Exposure to the base therapy (donepezil, galantamine or rivastigmine) will be defined and summarised in the same way as exposure to IMP.

The dose of IMP can be decreased once during the trial if it is not well tolerated in the opinion of the investigator. Number and percent of patients with dose reduction will be summarised. A Kaplan-Meier curve for ‘survival’ on the randomised dose will be produced.

Compliance with IMP (%) in the treatment period will be defined as the compliance for the interval between the date of Randomisation +1 (the first IMP should be taken one day after the randomisation) and the Completion/Withdrawal Visit:
\[
\frac{\text{date of Completion/Withdrawal Visit} - \text{date of Randomisation} - \text{total number of days of non-compliance}}{\text{date of Completion/Withdrawal Visit} - \text{date of Randomisation}} \times 100\%
\]

Compliance with IMP (%) will also be defined for intervals between consecutive scheduled visits in the treatment period. The first visit interval will be the interval between date of first IMP and date of Visit 3, and thereafter intervals between Visit\textsubscript{i} and Visit\textsubscript{i+1} (i=3, 4, 5, and 6).

For details on data handling issues, see paragraphs 18.4.4 and 18.5.
Compliance with IMP will be summarised by treatment group, both by visit interval and for the entire treatment period.

Compliance with base therapy (donepezil, rivastigmine or rivastigmine) will be defined and summarised in a way corresponding to the summary of compliance with IMP.

Exposure and compliance will be summarised based on the APTS.

10 Efficacy

10.1 General Efficacy Analysis Methodology

Primary, key-secondary, and secondary endpoints and the type (continuous, categorical, or binary) are summarised in Panel 2.
Panel 2 Endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change from Baseline to Week 24 in ADAS-Cog total score</td>
<td>1</td>
</tr>
<tr>
<td>ADCS-CGIC score at Week 24 (assessment of patient change compared to patient’s condition at the Baseline Visit)</td>
<td>1, 2</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in ADCS-ADL23 total score</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in NPI total score</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline in single NPI item scores at Week 24 (12 endpoints)</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in NPI single item scores of at least 2 at Baseline (12 endpoints)</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in NPI caregiver distress total score</td>
<td>1</td>
</tr>
<tr>
<td>Clinical response at Week 24 (ADAS-Cog change ≤ -4 and ADCS-ADL23 change ≥0 and ADCS-CGIC<=4)</td>
<td>3</td>
</tr>
<tr>
<td>Clinical response at Week 24 where response is defined using cut-offs of ≤-3, ≤-2, ≤-1 for ADAS-Cog change, ADCS-ADL23 change ≥0 and ADCS-CGIC<=4 (three endpoints)</td>
<td>3</td>
</tr>
<tr>
<td>Clinical worsening at Week 24 (ADAS-Cog change ≥4 and ADCS-ADL23 change <0 and ADCS-CGIC >4)</td>
<td>3</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in MMSE total score</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in EQ-5D utility score</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in EQ-5D VAS</td>
<td>1</td>
</tr>
<tr>
<td>Area under curve (AUC) from baseline to week 24 for the changes from baseline in ADAS-Cog total score</td>
<td>1</td>
</tr>
<tr>
<td>AUC from Baseline to week 24 for the changes from Baseline in ADCS-ADL23 total score</td>
<td>1</td>
</tr>
<tr>
<td>AUC from Baseline to week 24 for the ADCS-CGIC scores minus four (as ADCS-CGIC is an assessment of changes, i.e. no change in health state corresponds to a score of 0)</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in ADAS-Cog and ADCS-ADL23 composite score</td>
<td>1</td>
</tr>
<tr>
<td>AUC from Baseline to Week 24 for the changes in ADAS-Cog and ADCS-ADL23 composite score</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in Basic ADCS-ADL23</td>
<td>1</td>
</tr>
<tr>
<td>Change from Baseline to Week 24 in Instrumental ADCS-ADL23</td>
<td>1</td>
</tr>
<tr>
<td>Plasma concentrations of idalopirdine and base treatment</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = continuous; 2 = categorical; 3 = binary

For details about data handling issues in the derivation of variables and assigning data to visits (weeks), see section 18.2 and paragraph 18.3.1.

Unless otherwise specified, all the efficacy analyses will be based on the FAS.

All the tables and graphs will be presented by treatment group.
The *follow-up efficacy data* will only be used for sensitivity analyses (see last section in chapter 2).

Absolute values and change from Baseline values (if defined) for the efficacy variables (MMSE total score, ADAS-Cog total score, ADCS-ADL23 total score, Basic ADCS-ADL23, Intrumental ADCS-ADL23, ADCS-CGIC, NPI total score, NPI items, and NPI caregiver distress total score) will be summarised by visit week and treatment group, using available observations in the *treatment period*. ADCS-CGIC will be summarised both as a continuous and as a categorical variable. Descriptive statistics for efficacy variables will be repeated by MMSE stratum and base therapy stratum.

Countries and sites where not all treatment groups are represented in the FAS will be grouped according to the specification in section 18.6, and the grouped variable will be used in the efficacy analyses where country/site is included.

All the p-values will be based on two-sided tests; the confidence intervals (CIs) will be two-sided.

10.2 Analysis Methodology for the Primary Endpoint

10.2.1 Analysis of the Primary Endpoint

Change from Baseline in ADAS-Cog total score will be analysed using a restricted maximum likelihood (REML)-based mixed model for repeated measures (MMRM) approach. The model will include randomised treatment (idalopirdine | placebo), country, MMSE stratum (<19 | ≥19), base treatment stratum (donepezil | rivastigmine/galantamine), and Week (4, 12, and 24) as fixed categorical effects, Baseline score as a continuous covariate, treatment-by-week interaction, MMSE stratum-by-week interaction, base treatment stratum-by-week interaction, and Baseline score-by-week interaction. An unstructured covariance structure will be used to model the within-patient errors. The Kenward-Roger approximation will be used to estimate denominator degrees of freedom. The analysis will be based on the missing-at-random (MAR) assumption and performed using all available observations (observed cases [OC] data) in the *treatment period*. The SAS code for the analysis is included in Appendix III.

If this model fails to converge, the following covariance structures will be tested: first-order ante-dependence, heterogeneous compound symmetry, compound symmetry. The (co)variance structure converging to the best fit, as determined by Akaike’s information criterion, will then be used as the primary analysis.

The mean difference between idalopirdine and placebo will be estimated based on the least squares mean for the treatment-by-visit interaction in the MMRM model. The estimate will be presented with a nominal p-value and a 95% confidence interval (CI). The primary comparison will be the contrast between idalopirdine and placebo at Week 24. Details of the statistical testing for the primary endpoint are provided in section 10.4.
10.2.2 Rationale for Selected Analysis Method for the Primary Endpoint

The MMRM analysis uses all available data measured repeatedly over time and allows for evaluation of the treatment-by-time interaction. The MMRM analysis provides an unbiased estimate of the treatment effect under the assumption that missing data are MAR.

Published data support the robustness of the MMRM analysis regarding protection against type I error and against bias, also in situations with a non-negligible proportion of missing data. Using extensive simulations, it has been demonstrated that the type I error is only affected to a limited extent and that the bias is small under the assumption that 1/3 of the missing data are missing-not-at-random (MNAR), even when there is a severe imbalance between the treatment groups in the proportion of withdrawals.\(^1\)

10.2.3 Subgroup Analyses and Model Assumptions for Analysis of the Primary Endpoint

A plot with mean values-by-week will be presented, grouped by withdrawal pattern (week of last available value). At or before last available week, the mean values will be the mean of observed (unadjusted) values. The mean values after last available week will be based on values predicted from the MMRM-model in paragraph 10.2.1. Solid lines will indicate observed pattern, and dotted lines will indicate predicted pattern. The plot will include information about the number of patients for each withdrawal pattern. The plot will also be generated separately for each primary reason for withdrawal.

Subgroups of special interest are (ranked in the listed order):
- MMSE stratum
- Apathy (yes/no), where apathy is defined as Baseline NPI item apathy score >0
- Age groups (age <85 and age ≥85 years)

The assumption of equal treatment effect for the MMSE strata will be investigated. Analysis will be performed for each stratum separately, using the same methodology as that described for the primary analysis (see paragraph 10.2.1) excluding MMSE stratum and MMSE stratum-by-visit interaction from the model.

The assumption of equal treatment effect for the MMSE strata will also be investigated by adding the three-way interaction MMSE stratum-by-treatment-by-week to the model in the primary analysis (see paragraph 10.2.1). The treatment effect of idalopirdine compared to placebo in each stratum will be estimated by least squares means for the contrast MMSE stratum-by-treatment-by-week. The primary comparison will be the contrast between idalopirdine and placebo in each stratum at Week 24. The p-value for the test of MMSE stratum-by-treatment interaction at week 24 will be presented.

The purpose of the subgroup analysis of patients with or without apathy at Baseline is to test if apathy may serve as a phenotypic marker for a cohort of patients with a higher level of response. The analysis will be conducted as described for the MMSE stratum subgroup analysis.
Consistency of effect across base treatment strata and age groups will be evaluated with the corresponding analyses as for the MMSE strata.

10.2.4 Sensitivity Analyses of the Primary Endpoint

Sensitivity analyses will be performed to evaluate how different assumptions affect the estimates of the treatment effect.

The total number of patients with a value of the primary endpoint, and the number of patients of those who had a value included in the primary analysis, or a value collected in the withdrawal follow-up will be summarised.

Individual subject-by-time (actual time) plots of the primary variable by primary reason for withdrawal or completion will be presented, including follow-up efficacy data. Data captured in the treatment period will be indicated with solid lines, and data captured in the withdrawal follow-up period will be indicated with dashed lines. Time of first and last IMP intake will be marked in the plots.

The same MMRM analysis as that described for the primary endpoint in paragraph 10.2.1 including follow-up efficacy data for patients withdrawn from treatment will be done as a sensitivity analysis.

An analysis using a pattern-mixture model (PMM) will be performed, in which monotone missing values in patients withdrawn from treatment will be imputed using multiple imputation (MI) based on the placebo group. The analysis will be based on the set of patients that are included in the primary analysis. The PMM assumes that the distribution for patients who withdraw from treatment is equal to the conditional distribution for the placebo group with the corresponding past. This is the basis for the multiple imputation of the monotone missing values in the treatment group. The PMM model will include country, MMSE stratum, base treatment stratum, baseline ADAS-Cog total score, and change from baseline in ADAS-Cog total score at Weeks 4, 12, and 24. To prepare data for the PMM, a dataset with only monotone missing values will be created, imputing non-monotone missing values by MI based on a Markov Chain Monte Carlo (MCMC) model. The assumption in the MCMC model is that non-monotone missing values are missing at random. The MCMC analysis will be performed by treatment group, MMSE stratum, and base treatment stratum and the model will include baseline ADAS-Cog total score, and change from baseline in ADAS-Cog total score at Weeks 4, 12, and 24. In total, 200 simulations will be performed using random seeds 817345 (for the MCMC model) and 643874 (for the PMM). The 200 datasets will be analysed using the MMRM model specified in paragraph 10.2.1. Monotone missing values in patients that are not withdrawn from treatment will be assumed to be MAR, and missing values imputed from the PMM in those patients will be re-set to missing before the MMRM-analysis. The estimated treatment effects and standard errors across the 200 simulations will be combined to produce a unique point estimate and standard error, taking into account the uncertainty of the imputation. This approach will generally provide a conservative estimate of the treatment effect since it both penalises high withdrawal rates as well as higher withdrawal rates on the experimental therapy. The SAS code for the
Analysis is included in Appendix III.

A plot with mean values-by-week will be presented, grouped by withdrawal pattern (week of last available value). At or before last available week, the mean values will be the mean of observed (unadjusted) values. The mean values after last available week will be based on values imputed from the PMM (values for patients withdrawn from treatment) and values predicted from the MMRM model (values for patients not withdrawn from treatment). Solid lines will indicate observed pattern, and dotted lines will indicate imputed/predicted pattern. The plot will include information about the number of patients for each withdrawal pattern.

Modifications where only data missing due to adverse events (primary reason) are imputed using the same methodology (PMM) will also be performed (that is, data missing due to the other reasons for withdrawal [protocol violation, withdrawal of consent, and other reasons] will be assumed to be MAR).

An analysis with country replaced by site in the model described in paragraph 10.2.1 will be performed.

An analysis with MMSE total score at baseline as a continuous covariate, and MMSE total score at baseline-by-week interaction added to model described in paragraph 10.2.1 will be performed.

10.3 Analysis Methodology for the Key Secondary Endpoints

10.3.1 Analysis of the Key Secondary Endpoints

For the key secondary endpoints (ADCS-CGIC and ADCS-ADL23), the same methodology as that described for the primary endpoint (see paragraph 10.2.1) will be used. For ADCS-CGIC post-baseline, the scores at each visit will be analysed as opposed to changes from Baseline since the score itself is an assessment of change from Baseline. The ADCS-CGIC score at Baseline, which is a clinical status evaluation, will be included for covariate adjustment, however.

The testing strategy for the key secondary endpoints is described in section 10.4.

10.3.2 Rationale for Selected Analysis Method for the Key Secondary Endpoints

The rationale is the same as described for the primary endpoint, see paragraph 10.2.2.

10.3.3 Subgroup Analyses and Model Assumptions for Analysis of the Key Secondary Endpoints

Investigation of the robustness of the model assumptions and consistency of treatment effect across subgroups will be performed in the corresponding way as for the primary endpoint, see paragraph 10.2.3.
10.3.4 Sensitivity Analyses of the Key Secondary Endpoints

The corresponding sensitivity analyses as for the primary endpoint (see paragraph 10.2.4) will be applied for the key-secondary endpoints.

In addition, for ADCS-CGIC at week 24, a logistic regression model for ordinal response will be applied to explore sensitivity to the normal distribution assumption for this variable in the primary analysis. The model will include treatment as a factor and Baseline score as a covariate. The possible responses are \{1,2,3,4,5,6,7\}. Because the extreme categories are rare the responses will be grouped as \{(1,2),3,4,5,(6,7)\}. The analysis will be based on observed cases using a logit link function to relate the underlying latent variable to the probability of observing a response less than or equal to a given ordered response.

The likelihood-ratio statistic and corresponding p-value for the treatment effect at week 24 will be derived from the maximum likelihood estimate and standard errors of the regression parameters for idalopirdine versus placebo at week 24. The estimate will also be reported as an odds ratio (versus placebo) of response.

10.4 Testing Strategy

The null hypothesis of no difference to placebo in mean change from baseline in ADAS-Cog at Week 24 will be tested at a significance level of 5%. If the null hypothesis for ADAS-Cog is rejected, the null hypotheses of no difference to placebo in mean change from Baseline at Week 24 for ADCS-ADL23 and mean ADCS-CGIC at Week 24 will be tested applying Hochberg's testing procedure at a significance level of 5% to control for multiplicity. This procedure controls the overall family-wise type 1 error rate at 5%.

A summary table for the primary and key secondary endpoints will be presented with the estimated treatment differences, nominal p-values, and multiplicity-adjusted p-values (i.e. the lowest significance level under which the active dose would meet the efficacy criterion based on the testing strategy).

10.5 Analysis of the Secondary Endpoints

Changes from Baseline in NPI total score, changes from Baseline in individual NPI items, changes from Baseline in NPI total caregiver distress, changes from Baseline in ADAS-Cog and ADCS-ADL23 composite score, changes from Baseline in Basic ADCS-ADL23 and changes from Baseline in Intrumental ADCS-ADL23 at Week 4, 12, and 24 will be analysed using the same methodology as that described for the primary endpoint (see paragraph 10.2.1). Changes from Baseline in NPI single items at Week 4, 12, and 24 in patients with an item score of at least 2 at baseline will also be analysed using the same methodology as that described for the primary endpoint.

Emergence of individual NPI items (score ≥ 3) at Week 24 in patients with an item score of < 3 at Baseline will be compared for idalopirdine versus placebo using a Cochran-Mantel-
Haenszel test for comparing the proportion of patients with emerging symptoms stratifying for country, MMSE stratum, and base treatment stratum using observed cases.

The proportion of patients with clinical response (ADAS-Cog change ≤ -4 and ADCS-ADL23 change ≥ 0 and ADCS-CGIC <= 4) at Week 24 will be compared for idalopirdine versus placebo using a Cochran-Mantel-Haenszel test stratifying for country, MMSE stratum, and base treatment stratum. The analysis will be done for observed cases, as well as by imputing missing values as non-response (NR). The corresponding analyses will be performed for the proportion of patients with response, where response is defined using cut-offs of ≤-3, ≤-2, and ≤-1 for ADAS-Cog change and no deterioration in ADCS-ADL23 or ADCS-CGIC (ADCS-ADL23 change ≥ 0 and ADCS-CGIC <= 4).

The proportion of patients with clinical worsening (ADAS-Cog change ≥ 4 and ADCS-ADL23 change < 0 and ADCS-CGIC > 4) at Week 24 will be compared for idalopirdine versus placebo using a Cochran-Mantel-Haenszel test stratifying for country, MMSE stratum, and base treatment stratum. The analysis will be done for observed cases, as well as by imputing missing values as clinical worsening.

Change from Baseline in MMSE score at Week 24 will be analysed using an ANCOVA model with treatment, country, MMSE stratum, and base treatment stratum as fixed factors and Baseline MMSE score as a covariate using observed cases.

AUC from Baseline to week 24 for the changes from Baseline in ADAS-Cog total score, changes from Baseline in ADCS-ADL23 total score, and ADCS-CGIC minus 4 will be calculated by applying the trapezoidal rule to the least square mean estimates based the same model as in the primary analysis (see paragraph 10.2.1). The cumulative treatment effects compared to placebo based on the AUC estimates will also be calculated.

Analyses of changes from Baseline in EQ-5D, and VAS are described in chapter 13.

11 Safety

11.1 Adverse Events

11.1.1 General Methodology for Adverse Events

Unless otherwise specified, tables, graphs, and listings will be based on the APTS. All the tables and graphs will be presented by treatment group.

Tables by preferred term and tables by system organ class (SOC) and preferred term will be sorted in descending order by the percentage of patients in the idalopirdine arm.

Unless otherwise specified, the summaries of adverse events will include the total number and percentage of patients with an adverse event. Tables by preferred term and tables by SOC and preferred term will also include information about the total number of events. For sex-specific
preferred terms, the denominator in the % calculations will be the number of patients of that sex. Sex-specific preferred terms will be flagged in the summaries.

In summaries of adverse events presented by intensity, the maximum intensity of the adverse event will be used for patients who have more than one intensity of that event. Adverse events for which information on intensity is missing will be classified as severe.

Listings of adverse events will be sorted by treatment group, site, patient screening number, and adverse event start date. The lists will include preferred term, investigator term, adverse event start date, days since first dose of IMP, duration of the adverse event, action taken, causality, intensity, seriousness, and outcome. If outcome is fatal, date of death will be included in lists. For adverse events that change in intensity, each intensity will be included.

11.1.2 Coding of Adverse Events

Adverse events will be coded using MedDRA, Version 17.1 or later.

11.1.3 Classification of Adverse Events

Adverse events will be classified according to the time of onset of the adverse event:

- **Pre-treatment adverse event** – an adverse event that started at or after the date the patient signed the *Informed Consent Form* and prior to the date of first dose of IMP
- **Treatment-emergent adverse event (TEAE)** – an adverse event that started or increased in intensity at or after the date of first dose of IMP.

For handling of missing or incomplete dates in the classification of adverse events, see paragraphs 18.4.1 (IMP start date) and 18.4.4 (adverse event start- and stop date(s)).

An adverse event is considered causally related to the use of the IMP when the causality is assessed as *probable* or *possible* by the investigator.

11.1.4 All Adverse Events

All adverse events will be listed for the APRS.

An overview of patient years of exposure (PYE) to IMP (see definition in chapter 9), numbers and percentages of patients with TEAEs, serious adverse events (SAEs), adverse events leading to withdrawal, adverse events leading to dose reduction, or patients who died will be provided based on the APTS. For TEAEs, SAEs, adverse events leading to withdrawal, and adverse events leading to dose reduction, the total number of events will be included.

11.1.5 Pre-treatment Adverse Events

Pre-treatment adverse events will be summarised by preferred term.
11.1.6 Treatment-emergent Adverse Events

The following summaries will be provided:
• TEAEs by SOC and preferred term
• TEAEs by preferred term
• TEAEs with an incidence >5% in either treatment group by preferred term
• Causally related TEAEs by SOC and preferred term
• TEAEs by intensity (mild/moderate/severe), SOC, and preferred term
• Causally related TEAEs by intensity, SOC, and preferred term

The tabulation of TEAS by SOC and preferred term will also be done by MMSE stratum and base treatment stratum.

11.1.7 Deaths

All adverse events with outcome death will be summarised. All adverse events for patients who died will be listed.

11.1.8 Serious Adverse Events

All SAEs will be listed.

Treatment-emergent SAEs will be summarised by:
• SOC and preferred term
• Preferred term

11.1.9 Adverse Events Leading to Withdrawal or Dose Reduction

All adverse events leading to withdrawal or dose reduction will be listed (one list for withdrawal and one list for dose reduction).

TEAEs leading to withdrawal will be summarised by:
• SOC and preferred term
• Preferred term

A similar summary will be done for TEAEs leading to dose reduction. The summaries of TEAEs leading to withdrawal or dose reduction will also be done by MMSE stratum and base treatment stratum.

11.1.10 Adverse Events of Special Interest

The following SMQs will be summarised in total and by preferred term:
• Convulsions (narrow scope)
• Drug related hepatic disorders (comprehensive search)
11.2 General Methodology for Other Safety Data

Unless otherwise specified, tables, graphs, and listings will be based on the APTS. All tables and graphs will be presented by treatment group, ordered by descending frequency in the idalopirdine arm. The denominators for the summaries of a given variable will be based on the number of patients with non-missing values at a given visit or during the assessment period.

Descriptive statistics for the safety variables (lab tests, vital signs, weight, and ECGs), both absolute values and changes from baseline, will be presented by visit week and the last assessment. All available assessments will be included in the identification of the last assessment (scheduled, re-assessments, and unscheduled).

The number and percentage of patients with at least one potentially clinically significant (PCS) value at any post-baseline assessment time point will be summarised by variable. All available assessments will be included in the evaluation of PCS values (scheduled, re-assessments, and unscheduled).

For details about data handling issues, see section 18.1 and paragraph 18.3.2.

For patients with post-baseline PCS values, listings will be provided including all available values for the variable, with flagging of PCS values and out-of-reference-range values.

All adverse events for patients with PCS values will be listed by treatment group and patient screening number and include the PCS value; investigator term and preferred term for the adverse event; and intensity, seriousness, causality, action taken, outcome, start date, and duration of the adverse event; and days since first dose of IMP at the time of onset of the adverse event. The PCS value will be listed next to the corresponding adverse event(s); the PCS values and adverse events will be listed in chronological order according to assessment date and the start date of the adverse event.

For selected variables, the following graphical presentations will be produced:

- Box-and-whisker plots by visit week and the last assessment
- Patient line plots with all available assessments. If relevant, out-of-reference-range and/or PCS values will be marked in the plot. Reference lines for reference ranges and/or PCS limits may also be included. If more than one value is available at a given assessment time
point, the worst (most extreme) value will be used in the plots (the ‘worst’ value may be high or low, depending on the parameter).

11.3 Clinical Safety Laboratory Test Data

11.3.1 Data Presentation

The PCS Criteria for the clinical safety laboratory tests are described in Table 2.

All the clinical safety laboratory test values will be presented in conventional and/or Système International (SI) units.

The summary statistics for GGT, ALT, AST, ALP, BILI, and EOSLE will be presented in a separate table, also including worst (highest) post-baseline assessment. All available assessments will be included in the evaluation of the worst assessment (scheduled, re-assessments, and unscheduled).

Graphical presentations of gamma glutamyl transferase (GGT), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total serum bilirubin (BILI) are described in Panel 3 (further graphical presentations of ALT, AST, ALP, and BILI will be done in the evaluation of drug-induced liver injury, see paragraph 11.3.3). The graphs will be presented by treatment group, and sex.

Panel 3 Graphical Presentations for the Clinical Safety Laboratory Tests

<table>
<thead>
<tr>
<th>Laboratory Test</th>
<th>Measure</th>
<th>Patient Selection</th>
<th>Line Plot</th>
<th>Box Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGT, ALT, AST, ALP and TBL</td>
<td>Absolute measure</td>
<td>Patients with at least one post-baseline value out of upper reference range for GGT</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>GGT</td>
<td>Absolute measure</td>
<td>Patients with at least one post-baseline value out of upper reference range for GGT</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>ALT</td>
<td>Absolute measure</td>
<td>Patients with at least one post-baseline value out of upper reference range for ALT</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>AST</td>
<td>Absolute measure</td>
<td>Patients with at least one post-baseline value out of upper reference range for AST</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>ALP</td>
<td>Absolute measure</td>
<td>Patients with at least one post-baseline value out of upper reference range for ALP</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Total bilirubin (TBL)</td>
<td>Absolute measure</td>
<td>Patients with at least one post-baseline value out of upper reference range for TBL</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

11.3.2 Urinalysis

For tests based on urine dipsticks the results are categorical, and the number and percentage of patients in each category will be summarised for each test by visit week and last assessment.
The microscopy results will be listed for patients with any positive urine tests by assessment
time point.

11.3.3 Evaluation of Potential Drug-induced Liver Injury (DILI)

Signals of DILI will be assessed according to the FDA guideline. The number and percent of
patients post-baseline in the categories below for AST/ALT, and AST and ALT separately
will be summarised:

- $\text{ULN} < \text{value} \leq 1.5 \times \text{ULN}$
- $1.5 \times \text{ULN} < \text{value} \leq 2 \times \text{ULN}$
- $2 \times \text{ULN} < \text{value} \leq 3 \times \text{ULN}$
- $3 \times \text{ULN} < \text{value} \leq 5 \times \text{ULN}$
- $5 \times \text{ULN} < \text{value} \leq 10 \times \text{ULN}$
- $10 \times \text{ULN} < \text{value} \leq 20 \times \text{ULN}$
- $20 \times \text{ULN} < \text{value}$

The number and percent of patients post-baseline in the categories below for ALP and BILI
will be summarised:

- $\text{ULN} < \text{value} \leq 1.5 \times \text{ULN}$
- $1.5 \times \text{ULN} < \text{value} \leq 2 \times \text{ULN}$
- $2 \times \text{ULN} < \text{value} \leq 3 \times \text{ULN}$
- $\text{value} > 3 \times \text{ULN}$

The cumulative number and percentage of patients post-baseline in the categories will also be
summarised. In the summaries, each patient should be counted only once using the worst
post-baseline assessment.

Number and percent of patients fulfilling the joint criteria below post-baseline will be
summarised:

- \((\text{PEAK AST OR PEAK ALT} > 3 \times \text{ULN}) \quad \text{AND PEAK BILI} > 2 \times \text{ULN} \quad \text{AND PEAK ALP} > 1.5 \times \text{ULN})
- \((\text{PEAK ALT OR PEAK AST} > 3 \times \text{ULN}) \quad \text{AND PEAK BILI} > 2 \times \text{ULN} \quad \text{AND PEAK ALP} \leq 1.5 \times \text{ULN})
- \text{PEAK GGT} > 200 \text{ IU/L without (PEAK ALT OR PEAK AST OR PEAK ALP} > 2 \times \text{ULN})$

Number and percent of patients with a post-baseline value $\geq 5\%$ for B-eosinophils/leucocytes
(EOSLE) will be summarised.

Evaluation of potential Drug-induced Serious Hepatotoxicity (eDISH) will also be done by
plots. Scatter plots of peak ALT/AST versus peak BILI will be produced (note that this means
that the peak ALT/AST and the peak BILI may not occur at the same assessment timepoint).
The values will be normalised by the ULN (unit \timesULN) and the X-and Y-axes will be on the
log scale. The plot will include a reference line for ALT/AST values $>3 \times \text{ULN}$, and a
reference line for BILI values $>2 \times \text{ULN}$. Four quadrants are defined by the reference lines,
with the right upper quadrant being the most specific indicator of a drug’s potential for causing serious liver injury (Hy’s law quadrant). The plot will include number of patients in each quadrant for each treatment group.

Subject line plots with values-by-time for ALT, AST, ALP, BILI, GGT and EOSLE (overlaid in the same plot) will be generated for patients with ALT/AST > 1xULN. The test values will be normalised by the ULN (unit xULN) and the Y-axis will be on the log scale. The time will be days since Baseline, and reference lines for the day of first and last IMP intake will be included. All assessments will be included. If there is more than one assessment at the same time point for a test, the maximum value will be used.

Conditional correlations of values adjusted for patient average level (mean value for each subjects’s entire treatment period subtracted from the subject’s values at each visit) of ALT, AST, ALP, and BILI versus EOSLE will be generated as tables and scatter plots for:

- All patients
- Patients with a post-baseline value of ALT/AST>2xULN
- Patients with a post-baseline value of ALT/AST>3xULN

Patients with a post-baseline value of GGT, ALT, AST, ALP, BILI, or EOSLE>1xULN will be listed, and the listing will include all available ALT, AST, BILI, ALP, GGT, and EOSLE values, sorted by site, treatment group, subject number, assessment date and time.

11.4 Vital Signs and Weight

The PCS Criteria for vital signs and weight changes are defined in Table 3. Descriptive statistics of changes from baseline and absolute values for all parameters will be presented per visit using OC and the last assessment.

Individual subject listings of vital signs, weight, and BMI will be prepared. Listings and tables will include flagging and summaries of PCS values. For details on reassessments, see section 18.3.

An overview of the graphical presentations for vital signs and weight is provided in Panel 4.
Panel 4
Graphical Presentations for Vital Signs and Weight

<table>
<thead>
<tr>
<th>Variable</th>
<th>Measure</th>
<th>Patient Selection</th>
<th>Line Plot</th>
<th>Box Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>Absolute value</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>BMI</td>
<td>Change from Baseline</td>
<td>Patients with weight decrease as TEAE</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Percent change from Baseline</td>
<td>Patients with a post-baseline PCS low value</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Standing systolic BP</td>
<td>Absolute value</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Standing diastolic BP</td>
<td>Absolute value</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Standing pulse rate</td>
<td>Absolute value</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sitting systolic BP</td>
<td>Absolute value</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Sitting diastolic BP</td>
<td>Absolute value</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Sitting pulse rate</td>
<td>Absolute value</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

The box plot for BMI (absolute value) will include reference lines for underweight patients (BMI<18.5 kg/m²) and obesity (BMI > 30 kg/m²).

11.5 ECGs

11.5.1 Data Presentation

The PCS Criteria for the ECG parameters are defined in Table 4. An overview of the graphical presentation of ECG parameters is provided in Panel 5.

Panel 5
Graphical Presentations for ECG Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measure</th>
<th>Patient Selection</th>
<th>Line Plot</th>
<th>Box Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (bpm)</td>
<td>Absolute value</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>QTcB (msec)</td>
<td>Absolute value</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>QTcB (msec)</td>
<td>Change from Baseline</td>
<td>Patients with a post-baseline PCS value</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>QTcF (msec)</td>
<td>Absolute value</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>QTcF (msec)</td>
<td>Change from Baseline</td>
<td>Patients with a post-baseline PCS value</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

11.6 Neurological Examinations

Shift tables for neurological examination findings displaying shifts (of normal to abnormal) from Baseline to the Completion/Withdrawal Visit will be produced. The tables will provided for each examination and treatment group and will include the numbers and percentages of patients.
11.7 Other Safety Endpoints

11.7.1 Columbia-Suicide Severity Rating Scale (C-SSRS)

The C-SSRS was assessed:

- For lifetime (using the Baseline Version) – the C-SSRS assessment obtained at Screening Visit that collects a lifetime recall
- At Baseline and post-baseline (Visit 3 to Visit 7) using the Since Last Visit Version

The summaries will be based on the APTS by treatment group for patients with at least one post-baseline C-SSRS assessment, regardless of whether they had a Baseline C-SSRS assessment or not.

Missing C-SSRS scores will not be imputed.

The worst case per evaluation (lifetime, Baseline, and post-baseline) for each C-SSRS item within suicide ideation and suicide behaviour will be summarised.

The C-SSRS items are described in Panel 6. Patients with no suicidal ideation or behaviour are those who answered “No” to all items for suicidal ideation and suicidal behaviour. For each evaluation (lifetime, baseline, and post-baseline), the most severe event per patient related to suicidal ideation and suicidal behaviour will be summarised.

In the C-SSRS, non-suicidal self-injurious behaviour is captured as a different behaviour, and regarded independently of reported suicidal ideation and suicidal behaviour events.

Positive responses to non-suicidal self-injurious behaviour will be summarised for each evaluation (lifetime, Baseline, and post-baseline).
Panel 6 C-SSRS Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aCRF</td>
<td>Patients who answered “No” to all items in Suicidal Ideation and Suicidal Behaviour</td>
</tr>
<tr>
<td>CSSRS01</td>
<td>Wish to be dead</td>
</tr>
<tr>
<td>CSSRS02</td>
<td>Non-specific active suicidal thoughts</td>
</tr>
<tr>
<td>CSSRS03</td>
<td>Active suicidal ideation with any methods (not plan) without intent to act</td>
</tr>
<tr>
<td>CSSRS04</td>
<td>Active suicidal ideation with some intent to act, without specific plan</td>
</tr>
<tr>
<td>CSSRS05</td>
<td>Active suicidal ideation with specific plan and intent</td>
</tr>
<tr>
<td>CSSRS25</td>
<td>Preparatory acts or behaviour</td>
</tr>
<tr>
<td>CSSRS23</td>
<td>Aborted attempt</td>
</tr>
<tr>
<td>CSSRS21</td>
<td>Interrupted attempt</td>
</tr>
<tr>
<td>CSSRS18</td>
<td>Non-fatal suicide attempt</td>
</tr>
<tr>
<td>CSSRS27</td>
<td>Completed suicide (only applicable for the post-baseline assessments)</td>
</tr>
</tbody>
</table>

Suicidal Behaviour

For patients with any post-baseline suicidal behaviour, listings will be prepared including all C-SSRS scores; C-SSRS scores related to suicidal behaviour will be flagged.

12 Pharmacokinetic/Pharmacodynamic Analyses

Plasma concentrations of both idalopirdine and AChEI (donepezil/rivastigmine/galantamine) will be summarised by descriptive statistics by treatment group and visit.

A separate analysis plan describing the Pharmacokinetic/Pharmacodynamic analyses will be prepared by H. Lundbeck A/S: Dept of Quantitative Pharmacology in collaboration with Biostatistics Department and the results reported separately but referred to in the *Clinical Study Report*, as relevant.

13 Pharmacoeconomic Analyses

Dependence level score (based on the Dependence scale, see paragraph 18.2.8) will be summarised both as a continous and as a categorical variable. Absolute values and changes from baseline values in EQ-5D utility score, EQ-5D VAS, dependence level score, and dependence total score will be summarised by visit week and treatment group. Absolute values and shift from baseline in dependence level score and equivalent institutional care (dependence scale) will be summarised by visit week and treatment group.
The RUD Lite items will be summarised by visit week and treatment group.

Changes from baseline in EQ-5D utility Score and EQ-5D VAS at week 12, and 24 will be analysed using the same methodology as that described for the primary endpoint (see paragraph 10.2.1).

Increase from baseline in dependence level score will be defined as a binary variable (1 if change from baseline in dependence level score>0) at week 12 and 24, and compared for idalopirdine versus placebo using a Cochran-Mantel-Haenszel test stratifying for country and MMSE stratum. The analysis will be done for observed cases.

All analyses will be repeated by MMSE stratum and base treatment stratum.

Further presentations and statistical analyses of pharmaco-economics will be detailed in a separate Pharmaco-Economic Statistical Analysis Plan, prepared by the Global Analytics department, H. Lundbeck A/S, prior to unblinding. The results of the pharmaco-economic analyses described in the Pharmacoeconomic SAP will be presented in a separate pharmacoeconomic report.

14 Interim Analyses

No interim analyse of efficacy was planned. An independent DMC monitored the safety data at regular intervals specified in the Data Monitoring Committee Charter.

15 Sample Size Considerations

In total, 720 patients will be randomized (360 patients per arm) providing a power of 90% for idalopirdine showing significant improvements versus placebo on an overall 5% level on both ADAS-Cog and at least one of ADCS-ADL23 or ADCS-CGIC, assuming improvements of 2 points on both ADAS-Cog and ADCS-ADL23, and 0.25 on ADCS-CGIC for idalopirdine. The standard deviations (SDs) are approximately 6.10, 9.15, and 1.15 for the three outcomes when adjusting for intra-patient correlation and drop-out. The SD for each endpoint is obtained from the number of patients randomized in each arm (N1 and N2) and the standard error (SE) of the treatment effect estimate at 24 weeks in Study No. 12936A as SD=SE/√(1/N1+1/N2). This estimate both takes into account the actual variance at 24 weeks and the loss of information due to drop-out during the study, assuming that the dropout pattern observed in Study No. 12936A is representative of what will be observed in this study. The estimated correlations between the endpoints are -0.27 between ADAS-Cog and ADCS-ADL23, 0.38 between ADAS-Cog and ADCS-CGIC, and -0.35 between ADCS-ADL23 and ADCS-CGIC when adjusting for baseline scores. Multiplicity due to multiple endpoints is adjusted for as explained in the Statistical Methodology (Section 10). The power has been evaluated by simulation from a multivariate normal distribution with the assumed mean and covariance structure described.
16 Data and Analysis Standards and Statistical Software

The data will be collected and analysed in accordance with the Lundbeck standards specified in Lundbeck SDTM Version 2.2 or later, SADs Version 5.1 or later, and TGML Version 7.0 or later.

The statistical software used will be SAS®, Version 9.4 or later.

17 Changes to Analyses Specified in the Protocol

The following endpoints were added:

- Endpoints addressing the secondary objective:
 - Change from Baseline to Week 24 in NPI single item scores in patients with an item score of at least 2 at Baseline
 - Change from Baseline in NPI caregiver distress total score

- Endpoints that are supportive of the primary objective:
 - Clinical response at Week 24 where response is defined using cut-offs of ≤-3, ≤-2, ≤-1 for ADAS-cog change, ADCS-ADL23 change ≥0 and ADCS-CGIC≤4
 - Area under curve (AUC) from baseline to week 24 for the changes from baseline in ADAS-Cog total score
 - AUC from baseline to week 24 for the changes from baseline in ADCS-ADL23 total score
 - AUC from baseline to week 24 for the ADCS-CGIC minus four (as ADCS-CGIC is an assessment of changes, i.e. no change in health state corresponds to a score of 4 on the original scale)
 - Changes from Baseline to Week 24 in ADAS-Cog and ADCS-ADL23 composite score
 - AUC from baseline to week 24 for the changes from baseline in ADAS-Cog and ADCS-ADL23 composite score
 - Change from Baseline to Week 24 in Basic ADCS-ADL23
 - Change from Baseline to Week 24 in Instrumental ADCS-ADL23

Note that the endpoint Change from baseline to Week 24 in NPI Anxiety item score in patients with an NPI Anxiety score of at least 2 at baseline in the protocol is included in Change from baseline to Week 24 in NPI single items in patients with an item score of at least 2 at baseline.

Analyses of the added endpoints are described in section 10.5.
The endpoint *Emergence of individual NPI items (score>0)* for patients with an item score of 0 at baseline was replaced by:
- Emergence of individual NPI items (score ≥3). The analyses will be based on patients with an item score of <3 at baseline.

Sensitivity analyses with country replaced by grouped site in the primary analysis were added for the primary and key-secondary endpoints (see paragraphs 10.2.4 and 10.3.4).

Sensitivity analyses with MMSE total score at baseline as a continuous covariate, and MMSE total score at baseline-by-week interaction also included in the primary model were added for the primary and key-secondary endpoints (see paragraph 10.2.4 and 10.3.4).

Subgroup analyses of apathy (yes/no, defined as Baseline NPI item apathy score >0) and age (<85, and ≥85 years) were added for the primary and key-secondary endpoints (see paragraphs 10.2.3 and 10.3.3).

Instead of the specification of the model for the non-linear mixed model for ordinal response, a logistic regression analysis for the outcome at week 24 was specified as a sensitive analysis for ADCS-CGIC. This was due to technical challenges anticipated with fitting the non-linear mixed model for the repeated measures and imposed restrictions on the marginal correlation structure for these with this approach. In addition, the projected relative low withdrawal rate justifies the use of the simpler logistic model for observed cases at week 24 for sensitivity analysis. The model will use a logit link function to relate the underlying latent variable to the probability of observing a response less than or equal to a given ordered response (see paragraph 10.3.4).

18 Details on Data Handling

18.1 Definition of Baseline

The baseline value will be defined as the value captured either at the Screening Visit or at the Baseline Visit, whichever comes later.

18.2 Derived Variables

18.2.1 MMSE Total Score and MMSE stratum

MMSE contains 8 subcategories (orientation to time, orientation to place, registration, attention and calculation, recall, language, repetition, and complex commands), with in total 30 questions recording correct/incorrect responses (coded 1/0). The MMSE total score is defined as the sum of the 30 questions and the total score ranges from 0 to 30 (at screening the acceptable range is 12 to 22 due to inclusion criterion), with lower scores meaning more severe dementia.
The subcategory *attention and calculation* consists of 5 questions (aCRF items MMSE04A to MMSE04E), where the patient continuously should subtract 7 from 100 (correct responses 93, 86, 79, 72, and 65). If a question is answered incorrectly and the subsequent questions are not recorded, the missing responses will be counted as incorrect (0).

The total score will be missing if three or more items scores are missing, and if less than three item scores are missing the missing item scores will be imputed by the worst case (0).

MMSE stratum (mild, MMSE total score ≥19 | moderate MMSE total score < 19) used in the analyses will be based on the assessment collected at the Screening Visit.

18.2.2 ADAS-Cog Total Score

The ADAS-Cog assesses the patient’s orientation, memory (word recall, recognition, and remembering instructions), language (spoken language ability, comprehension of the spoken language, word finding difficulty, naming objects and fingers, following commands), and praxis (ideational and constructional). The ADAS-cog total score is defined as the sum of the 11 item scores described in Panel 7. If three or more items scores are missing, the total score will be missing. If less than three item scores are missing then the missing item scores will be imputed by the worst score for the item.

The ADAS-Cog total score ranges from 0 to 70, with a lower score indicating a lower cognitive impairment.
<table>
<thead>
<tr>
<th>ADAS-cog Item</th>
<th>Data collected in the eCRF</th>
<th>Definition of ADAS-cog Item Scores used in the calculation of the total score</th>
</tr>
</thead>
</table>
| 1. Word recall task | Total number of word recalled correctly, recorded in three trials (ranges 0-10 in each trial): | Average of the total number of words recorded incorrectly in the three trials rounded to the closest integer with 0.5 decimals rounded upwards (ranges from 0-10):
ADCRLT01 (aCRF ADCOG01)
ADCRLT02 (aCRF ADCOG02)
ADCRLT03 (aCRF ADCOG03)
ACITM01 = round(((10 - ADCRLT01) + (10 - ADCRLT02) + (10 - ADCRLT03)) / 3, 1.);
If <3 of the eCRF scores are missing, the item score will be the average of the available scores. |
| 2. Naming task | Total number of object/fingers named correctly (ranges 0-17) | eCRF score converted to total number of object/fingers named incorrectly (17-ADCOF), and then classified according to the scoring scheme below (ranges 0-5):
ACOF (aCRF ADCOG05)
ACITM02 =
0 = 0 – 2
1 = 3 – 5
2 = 6 – 8
3 = 9 – 11
4 = 12 – 14
5 = 15 – 17. |
| 3. Commands | Total number of commands performed correctly (ranges 0-5): | eCRF score converted to total number of commands performed incorrectly (ranges 0-5):
ACOG03 (aCRF ADCOG07)
ACITM03 = 5 - ACOG03; |
| 4. Constructional praxis | Total number of drawings performed incorrectly (ranges 0-5): | ACITM04 |
| 5. Ideational praxis | Total number of steps completed correctly (ranges 0-5): | eCRF score converted to total number of steps completed incorrectly (ranges 0-5):
ACOG05 (aCRF ADCOG09)
ACITM05 = 5 - ACOG05; |
| 6. Orientation | Total number of items answered correctly (ranges 0-8): | eCRF score converted to total number of items answered incorrectly (ranges 0-8):
ACOG06 (aCRF ADCOG10)
ACITM06 = 8 - ACOG06; |
| 7. Word recognition task | Total number of words identified correctly and total number of words identified incorrectly (both scores ranges 0-12): | Total number of words identified incorrectly, where scores>12 truncated to 12 (ranges 0-12):
ACRGT01 (aCRF ADCOG11)
ACRGT02 (aCRF ADCOG12)
ACITM07 = Min((12 - ACRGT01) + ACRGT02, 12);
If ACRGT01 or ACRGT02 is missing, the item score will be missing. |
| 8. Remembering test instructions | Level of impairment (ranges 0-5, see category labels below): | ACITM08 |
9. Language Level of impairment (ranges 0-5, same category labels as for item 8): ACITM09

10. Comprehension of spoken language Level of impairment (ranges 0-5, same category labels as for item 8): ACITM09

11. Word finding difficulty Level of impairment (ranges 0-5, same category labels as for item 8): ACITM10

18.2.3 ADCS-ADL 23 Total Score, Basic ADCS-ADL 23, and Instrumental ADCS-ADL 23

The ADCS-ADL 23 scale contains of 23 item scores (Usual Eating Performance, Optimal Walking Performance, Usual Bowel/Bladder Function, Usual Bathing Performance, Optimal Grooming Performance, Dressing, Use a Telephone, Watch Television, Pay Attention to Conversation, Clear Dishes, Find Belongings, Obtain Beverage, Make a Meal, Dispose of Garbage, Get Around Outside Home, Go Shopping, Keep Appointments, Left On His/Her Own, Talk About Current Events, Read More Than 5 Minutes, Write Things Down, Perform Pastime, and Use Household Appliance), where each item contains one or more questions.

The ADCS-ADL 23 total score is defined as the sum of the 23 item scores. “Don’t know” responses will be counted as worst case (0). For patients institutionalized, the item score number 18 (Left On His/Her Own) will be counted as worst case (0). The scoring scheme for the item scores are described in Panel 8.
Panel 8 Definition of ADCS-ADL$_{23}$ Item Scores

<table>
<thead>
<tr>
<th>ADCS-ADL$_{23}$ Item</th>
<th>Data collected in the eCRF (aCRF variable name)</th>
<th>Definition of ADCS-ADL$_{23}$ Item Scores used in the calculation of the total score (SADs paramcd name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Usual Eating Performance</td>
<td>ADADL01</td>
<td>Item score range 0-3: ADL01</td>
</tr>
<tr>
<td>2. Optimal Walking Performance</td>
<td>ADADL02</td>
<td>Item score range 0-3: ADL02</td>
</tr>
<tr>
<td>3. Usual Bowel/Bladder Function</td>
<td>ADADL03</td>
<td>Item score range 0-3: ADL03</td>
</tr>
<tr>
<td>4. Usual Bathing Performance</td>
<td>ADADL04</td>
<td>Item score range 0-3: ADL04</td>
</tr>
<tr>
<td>5. Optimal Grooming Performance</td>
<td>ADADL05</td>
<td>Item score range 0-3: ADL05</td>
</tr>
<tr>
<td>6. Dressing</td>
<td>ADADL06</td>
<td>Item score range 0-7:</td>
</tr>
<tr>
<td></td>
<td>ADADL07</td>
<td>If ADADL06="No" or ADADL06="Don’t know” then ADL06=0;</td>
</tr>
<tr>
<td></td>
<td>ADADL08</td>
<td>else if ADADL06="Yes” then ADL06= ADADL07;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADL06=ADL06+ADADL08;</td>
</tr>
<tr>
<td>7. Use a Telephone</td>
<td>ADADL09</td>
<td>Item score range 0-5:</td>
</tr>
<tr>
<td></td>
<td>ADADL10</td>
<td>If ADADL09="No” or ADADL09="Don’t know” then ADL07=0;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>else if ADADL09="Yes” then ADL07= ADADL10;</td>
</tr>
<tr>
<td>8. Watch Television</td>
<td>ADADL11</td>
<td>Item score range 0-3:</td>
</tr>
<tr>
<td></td>
<td>ADADL12</td>
<td>if ADADL11="No” or ADADL11="Don’t know” then ADL08=0;</td>
</tr>
<tr>
<td></td>
<td>ADADL13</td>
<td>%**"Yes”/"No”/"Don’t know” counted as 1/0/0;</td>
</tr>
<tr>
<td></td>
<td>ADADL14</td>
<td>else if ADADL11="Yes” then ADL08= ADADL12+ADADL13+ ADADL14;</td>
</tr>
<tr>
<td>9. Pay Attention to Conversation</td>
<td>ADADL15</td>
<td>Item score range 0-3:</td>
</tr>
<tr>
<td></td>
<td>ADADL16</td>
<td>If ADADL15="No” or ADADL15="Don’t know” then ADL09=0;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>else if ADADL15="Yes” then ADL09= ADADL16;</td>
</tr>
<tr>
<td>10. Clear Dishes</td>
<td>ADADL17</td>
<td>Item score range 0-3:</td>
</tr>
<tr>
<td></td>
<td>ADADL18</td>
<td>If ADADL17="No” or ADADL17="Don’t know” then ADL10=0;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>else if ADADL17="Yes” then ADL10= ADADL18;</td>
</tr>
<tr>
<td>11. Find Belongings</td>
<td>ADADL19</td>
<td>Item score range 0-3:</td>
</tr>
</tbody>
</table>
12. Obtain Beverage

If ADADL19="No" or ADADL19="Don’t know" then ADL11=0; else if ADADL19="Yes" then ADL11=ADADL20;

13. Make a Meal

Item score range 0-3:

If ADADL21="No" or ADADL21="Don’t know" then ADL12=0; else if ADADL21="Yes" then ADL12=ADADL22;

14. Dispose of Garbage

Item score range 0-3:

If ADADL25="No" or ADADL25="Don’t know" then ADL14=0; else if ADADL25="Yes" then ADL14=ADADL26;

15. Get Around Outside Home

Item score range 0-4:

If ADADL27="No" or ADADL27="Don’t know" then ADL15=0; else if ADADL27="Yes" then ADL15=ADADL28;

16. Go Shopping

Item score range 0-4:

If ADADL29="No" or ADADL29="Don’t know" then ADL16=0; else if ADADL29="Yes" then ADL16=ADADL30+ADADL31;

17. Keep Appointments

Item score range 0-3:

If ADADL32="No" or ADADL32="Don’t know" then ADL17=0; else if ADADL32="Yes" then ADL17=ADADL33;

18. Left on His/Her Own

Item score range 0-3:

If ADADL34="Yes" then ADL18=0; else if ADADL35="No" or
ADADL36 ADADL35="Don’t know" then
ADL18=0;
ADADL37 %**"Yes"/"No"/"Don’t know" counted
as 1/0/0;
ADADL38 else if ADADL35="Yes" then
ADL18= ADADL36+ ADADL37+ ADADL38;

19. Talk About Current Events ADADL39 Item score range 0-3:
ADADL40 if ADADL39="No" or
ADADL39="Don’t know" then
ADL19=0;
ADADL41 %**"Yes"/"No"/"Don’t know" counted
as 1/0/0;
ADADL42 else if ADADL39="Yes" then
ADL19= ADADL40+ ADADL41+ ADADL42;

20. Read More Than 5 Minutes ADADL43 Item score range 0-2:
ADADL44 if ADADL43="No" or
ADADL43="Don’t know" then
ADL20=0;
ADADL45 %**"Yes"/"No"/"Don’t know" counted
as 1/0/0;
ADADL46 else if ADADL43="Yes" then
ADL20= ADADL44+ ADADL45;

21. Write Things Down ADADL46 Item score range 0-3:
ADADL47 If ADADL46="No" or
ADADL46="Don’t know" then
ADL21=0;
ADADL50 else if ADADL46="Yes" then ADL21=
ADADL47;

22. Perform Pastime ADADL48 Item score range 0-3:
ADADL49 If ADADL48="No" or
ADADL48="Don’t know" then
ADL22=0;
ADADL50 else if ADADL48="Yes" then ADL22=
ADADL49;

23. Use Household Appliance ADADL50 Item score range 0-4:
ADADL51 If ADADL50="No" or
ADADL50="Don’t know" then
ADL23=0;
ADADL51 else if ADADL50="Yes" then ADL23=
ADADL51;

If five or more items scores are missing, the total score will be missing. If less than five item scores are missing, the missing questions within the item score will be imputed by the worst case for each missing question (missing main responses will be imputed by 0; if the main response is equal to “Yes”, missing subsequent question(s) will be imputed by the worst score for each question).
The ADCS-ADL\textsubscript{23} total score ranges from 0 to 78, with a higher score indicating a higher functioning status.

Basic ADCS-ADL\textsubscript{23} is defined as the sum of the item scores 1 to 6 (Usual Eating Performance, Optimal Walking Performance, Usual Bowel/Bladder Function, Usual Bathing Performance, Optimal Grooming Performance, and Dressing), and Instrumental ADCS-ADL\textsubscript{23} is defined as the sum of the item scores 7 to 23. Basic- and Instrumental ADCS-ADL\textsubscript{23} will be calculated after the imputation rule for missing item scores have been applied for the calculation of the ADCS-ADL\textsubscript{23} total score. The basic ADCS-ADL\textsubscript{23} ranges from 0 to 22 and the Instrumental ADCS-ADL\textsubscript{23} ranges from 0 to 56.

18.2.4 ADAS-Cog and ADCS-ADL\textsubscript{23} Composite Score

The composite score for ADAS-Cog and ADCS-ADL\textsubscript{23} will be constructed by averaging the standardized scores (z-scores) for each scale, i.e. equal weights will be used for the scales. The z-scores for each scale will be computed by subtracting the mean total score at baseline from the individual subject total score and dividing by the standard deviation (SD) for the total score at baseline. In the calculation of the composite score, the sign for the z-score of ADAS-Cog will be reversed (-1*z-score), i.e. a positive composite score indicates an improvement.

18.2.5 NPI Total Score

The NPI scale contains 12 domains (Delusions, Hallucinations, Agitation/Aggression, Depression/Dysphoria, Anxiety, Elation/Euphoria, Apathy/Indifference, Disinhibition, Irritability/Lability, Aberrant Motor Behaviour, Sleep, and Appetite and Eating Disorders). The NPI total score is defined as the sum of the 12 domain scores, where the domain score for each domain is calculated as (the domain is given by category 1-12 in the aCRF variable NPI01):

- If status (aCRF NPI02) is equal to “N/A” or “No”, the NPI domain score will be equal to 0; otherwise, the NPI domain score will be the product of frequency (aCRF NPI03, ranging from 1 to 4), and severity (aCRF NPI04, ranging from 1 to 3).
- If four or more domain scores are missing (due to missing record in status, or missing frequency, or severity for the domain), the NPI total score will be missing. If less than four domain scores are missing, the missing domains will (in the calculation of the NPI total score) be imputed by the mean of the non-missing domain scores.

Each domain score ranges from 0 to 12, and the NPI total score ranges from 0 to 144 where a higher score indicates a more serious behavioural issue.

18.2.6 NPI Caregiver Distress Total Score

The NPI caregiver distress total score is calculated as the sum of the caregiver distress for each domain (aCRF NPI05, ranging from 0 to 5), and ranging from 0 to 60.
If caregiver distress for four or more domains are missing, the NPI caregiver distress total score will be missing. If less than four scores are missing, the missing domains will (in the calculation of the NPI caregiver distress total score) be imputed by the mean of the non-missing scores, rounded to the closest integer (.5 rounded upwards).

18.2.7 EQ-5D Utility Score

The EQ-5D utility score will be derived from the EQ-5D questionnaire items mobility (aCRF EQ5DP01), self care (aCRF EQ5DP02), activity (aCRF EQ5DP03), pain (aCRF EQ5DP04), and anxiety (aCRF EQ5DP05). All items are scored from 1 (no problems) to 3 (extreme problems). If one or more items scores are missing, the utility score will be missing. The utility score will be calculated according to Doulan P. et al using the following SAS code where euro1-euro5 are the 5 individual item scores.

```sas
DATA eq5d;
  SET eq5d;
  IF (euro1 NOT IN (1,2,3) OR euro2 NOT IN (1,2,3) OR euro3 NOT IN (1,2,3) OR euro4 NOT IN (1,2,3) OR euro5 NOT IN (1,2,3)) THEN EQ5D_utility=.;
  ELSE DO; IF (SUM(OF euro1-euro5))=5 THEN c0=0;
                 ELSE c0=0.081;
                 IF (euro1=1) then c1=0;
                 ELSE IF (euro1=2) THEN c1=0.069;
                 ELSE IF (euro1=3) THEN c1=0.314;
                 IF (euro2=1) THEN c2=0;
                 ELSE IF (euro2=2) THEN c2=0.104;
                 ELSE IF (euro2=3) THEN c2=0.214;
                 IF (euro3=1) THEN c3=0;
                 ELSE IF (euro3=2) THEN c3=0.036;
                 ELSE IF (euro3=3) THEN c3=0.094;
                 IF (euro4=1) THEN c4=0;
                 ELSE IF (euro4=2) THEN c4=0.123;
                 ELSE IF (euro4=3) THEN c4=0.386;
                 IF (euro5=1) THEN c5=0;
                 ELSE IF (euro5=2) THEN c5=0.071;
                 ELSE IF (euro5=3) THEN c5=0.236;
                 IF (MAX(OF euro1-euro5)=3) THEN c6=0.269;
                 ELSE c6=0;
                 EQ5D_utility=1-SUM(OF c0-c6);
  END;
RUN;
```

18.2.8 Dependence Level Score

The dependence level score, ranging from 0 (no dependence) to 5 (complete dependence), is based on the the 13 items of the *Dependence Scale* described in Panel 9.
Panel 9 Items Dependence Scale

<table>
<thead>
<tr>
<th>Item</th>
<th>aCRF variable and codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the patient need reminders or advice to manage chores, do shopping, cooking, play games, or handle money?</td>
<td>DS01</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Occasionally</td>
</tr>
<tr>
<td></td>
<td>2=Frequently</td>
</tr>
<tr>
<td>Does the patient need help to remember important things such as appointments, recent events, or names of family or friends?</td>
<td>DS02</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Occasionally</td>
</tr>
<tr>
<td></td>
<td>2=Frequently</td>
</tr>
<tr>
<td>Does the patient need frequent (at least once a month) help finding misplaced objects, keeping appointments, or maintaining health or safety (locking doors, taking medication)?</td>
<td>DS03</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient need household chores done for them?</td>
<td>DS04</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient need to be watched or kept company when awake?</td>
<td>DS05</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient need to be escorted when outside?</td>
<td>DS06</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient need to be accompanied when bathing or eating?</td>
<td>DS07</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient have to be dressed, washed, and groomed?</td>
<td>DS08</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient have to be taken to the toilet to avoid incontinence?</td>
<td>DS09</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient have to be fed?</td>
<td>DS10</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient need to be turned moved, or transferred?</td>
<td>DS11</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient wear a diaper or a catheter?</td>
<td>DS12</td>
</tr>
<tr>
<td></td>
<td>0=No</td>
</tr>
<tr>
<td></td>
<td>1=Yes</td>
</tr>
<tr>
<td>Does the patient need to be tube fed?</td>
<td>DS13</td>
</tr>
</tbody>
</table>
If one or more item scores are missing, the dependence level score will be missing. The dependence level score will be calculated using the SAS code below:

data eff_ds_nom;
set eff_ds_nom;
if nrmis(DS01,DS02,DS03,DS04,DS05,DS06,DS07,DS08,DS09,DS10,DS11,DS12,DS13)>0
then DS_TOT=.;
else if DS11=1 or DS12=1 or DS13=1 then DS_TOT=5;
else if DS08=1 or DS09=1 or DS10=1 then DS_TOT=4;
else if DS05=1 or DS06=1 or DS07=1 then DS_TOT=3;
else if ((DS01=1)+(DS02=1)+(DS03=1)) >=2 or DS01=2 or DS02=2 or DS04=1 then
 DS_TOT=2;
else if DS01=1 or DS02=1 or DS03=1 then DS_TOT=1;
else DS_TOT=0;
run;

18.3 Assigning Data to Visits

This section describes rules for data to be used in descriptive analyses by visit week, and in statistical analyses.

18.3.1 Rating Scales

The assessment at the Withdrawal Visit for patients who withdrew from treatment will be assigned to a nominal visit in the treatment period according to the visit windowing specified in Panel 10 (ADAS-Cog, ADCS-CGIC and ADCS-ADL23, and NPI), or Panel 11 (RUD Lite, EQ-5D, and Dependence Scale). The assessment collected at the scheduled visit will be used in the analyses, or the windowed assessment from the Withdrawal Visit if no scheduled assessment is available. If the assessment at the Withdrawal Visit is assigned to the same visit as an assessment at a scheduled visit, the assessment from the scheduled Visit will be used.

Panel 10 Visit Windows for assessments collected at Visit 3, Visit 5, and Visit 7

<table>
<thead>
<tr>
<th>Nominal Visit Number</th>
<th>Nominal Visit Week</th>
<th>Nominal Visit Day</th>
<th>Time Window (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3</td>
<td>4</td>
<td>28</td>
<td>1 to 55</td>
</tr>
<tr>
<td>V5</td>
<td>12</td>
<td>84</td>
<td>56 to 125</td>
</tr>
<tr>
<td>V7 (Completion/Withdrawal)</td>
<td>24</td>
<td>168</td>
<td>>125</td>
</tr>
</tbody>
</table>

Panel 11 Visit Windows for assessments collected at Visit 5 and Visit 7

<table>
<thead>
<tr>
<th>Nominal Visit Number</th>
<th>Nominal Visit Week</th>
<th>Nominal Visit Day</th>
<th>Time Window (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5</td>
<td>12</td>
<td>84</td>
<td>1 to 125</td>
</tr>
<tr>
<td>V7 (Completion/Withdrawal)</td>
<td>24</td>
<td>168</td>
<td>>125</td>
</tr>
</tbody>
</table>

LU Study Number: 14863A
Trial Site Number: Study Level
Photo ID: CLI_00651838
Status: Final
Version: 1.0
The efficacy assessments collected at Withdrawal Follow-up Visit or Drop-out Retrieval Visit will only be included in sensitivity analyses. Assessments at the Withdrawal Follow-up Visit will be assigned to a nominal visit in the treatment period according to the visit windowing specified in Panel 10. Assessments at the Drop-out Retrieval Visit will by definition be assigned to Visit Week 24. If there are more than one assessment assigned to the same visit, the priority rule for the assessment to be used in the sensitivity analysis will be Drop-out Retrieval Visit, Withdrawal Follow-up Visit, Withdrawal Visit, and scheduled Visit.

18.3.2 Safety Variables

The first usable assessment at the Withdrawal Visit for safety variables (laboratory tests, vital signs, weight and ECGs) will be assigned to a nominal visit in the treatment period, according to the visit windowing specified in Panel 12.

Panel 12 Visit Windows for Clinical Safety Data

<table>
<thead>
<tr>
<th>Nominal Visit Number</th>
<th>Nominal Visit Week</th>
<th>Nominal Visit Day</th>
<th>Time Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3</td>
<td>4</td>
<td>28</td>
<td>1 to 41</td>
</tr>
<tr>
<td>V4</td>
<td>8</td>
<td>56</td>
<td>42 to 69</td>
</tr>
<tr>
<td>V5</td>
<td>12</td>
<td>84</td>
<td>70 to 104</td>
</tr>
<tr>
<td>V6</td>
<td>18</td>
<td>126</td>
<td>105 to 146</td>
</tr>
<tr>
<td>V7 (Completion/Withdrawal)</td>
<td>24</td>
<td>168</td>
<td>>146</td>
</tr>
</tbody>
</table>

For assessments at the Screening Visit or at the Baseline Visit, the last usable assessment will be used. For assessments at visits post-baseline, the first usable assessment from the scheduled visit will be used in the analyses by visit, or the windowed assessment from the Withdrawal Visit if no scheduled assessment is available.

18.4 Handling of Missing or Incomplete Dates/Times

18.4.1 IMP Start- and Stop Dates

For patients in the APTS, missing IMP start date will be imputed with the randomisation date.

A missing IMP stop date will not be imputed. As such, exposure will be missing for a patient with a missing IMP stop date and the patient will contribute as having no exposure in the calculation of PYE. If it can be ascertained from other data that the patient did take IMP until a specific date, this date may be used to calculate exposure.

18.4.2 Base Treatment Start Date

Donepezil/galantamine/rivastigmine treatment before Baseline (Screening Visit) was recorded. Each change in dose, frequency, or route of administration prior to Baseline was recorded as a new event.
Duration in years of base treatment before Baseline is calculated as number of days between start date of the first recorded treatment with base treatment and the Screening Visit divided by 365.25. In the calculation of duration, missing start-month will be imputed by June, and missing start-day will be imputed by 15, and then the minimum of imputed start dates, complete start dates, and the date of the Screening Visit will be used as start date.

18.4.3 Date of Alzheimer Diagnosis

Duration of Alzheimer’s disease diagnosis at Baseline will be calculated as the number of days between the date of diagnosis and the Screening Visit divided by 365.25. In the calculation of duration, missing month of diagnosis will be imputed by June, and missing day of diagnosis will be imputed by 15, and then the minimum of the imputed date of diagnosis and the date of the screening Visit will be used as date of diagnosis.

18.4.4 Withdrawal Date

For withdrawn patients with a missing Withdrawal Visit, the date of the last attended visit in the treatment period will be used in the calculation of time to withdrawal from treatment, and in the calculation of compliance.

18.4.5 Medication Start- and Stop Dates

Handling of missing medication start or stop dates are described in Panel 13.

Panel 13 Handling of Missing Dates in Classification of Medications

<table>
<thead>
<tr>
<th>Medication Start Date</th>
<th>Medication Stop Date</th>
<th>Medication Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>< date of first dose of IMP</td>
<td>Discontinued prior to first dose of IMP</td>
</tr>
<tr>
<td>Unknown</td>
<td>≥ date of first dose of IMP</td>
<td>Started at or after first dose of IMP</td>
</tr>
<tr>
<td>< date of first dose of IMP</td>
<td>Unknown</td>
<td>Continued after first dose of IMP</td>
</tr>
<tr>
<td>≥ date of first dose of IMP</td>
<td>Unknown</td>
<td>Started at or after first dose of IMP</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Started at or after first dose of IMP</td>
</tr>
</tbody>
</table>

18.4.6 Adverse Event Start- and Stop Dates

If a stop date is missing due to an event being ongoing, the last visit date will be used as the stop date in the classification of adverse events.

An adverse event with a missing or incomplete start- or stop date will be classified as a pre-treatment adverse event if:

- The start date is missing or incomplete, and the stop date is prior to the first dose of IMP, or the stop date is incomplete but known to be prior to the first dose of IMP (stop day is missing and stop year and month is before the year and month of the first dose of IMP)
IMP, or stop day and month are missing and stop year is before the year of first dose of IMP)

- The start date is incomplete but known to be prior to the first dose of IMP (start day is missing and start year and month is before the year and month of the first dose of IMP, or start day and month are missing and start year is before the year of first dose of IMP), and no change in intensity

In all other cases of an adverse event with a missing or incomplete start- or stop date, the event will be classified as a TEAE.

18.5 Compliance

In the calculation of compliance with IMP in visit intervals, the Withdrawal Visit will be assigned to the closest scheduled visit not attended for withdrawn patients.

Compliance with IMP is reported since the previous visit. Therefore, if one or more visits are missing between two visits attended, the compliance with IMP for visit interval(s) in the period including missed visit(s) will be estimated by the compliance with IMP in the period.

If compliance reporting is missing at the last attended visit in the treatment period, the patient will be assumed to be non-compliant during all days since the previous visit, and the number of days since previous visit will be added to the total number of days of non-compliance.

18.6 Grouping of Countries or Sites

In analyses where country is a factor, countries where not all treatment groups are represented in the FAS will be grouped according to the following stepwise procedure:

- Step 1 – All countries where not all treatment groups are represented in the FAS will be grouped into a single collective country within the same continent
- Step 2 - If not all treatment groups are represented in the FAS for a grouped country, the countries will be grouped with the smallest country within the same continent for which all treatment groups are represented in the FAS. If there is more than one such country, the first country in ascending alphabetic order will be selected for the grouping

In analyses where site is a factor, sites where not all treatment groups are represented in the FAS will be grouped according to the following stepwise procedure:

- Step 1 – All sites where not all treatment groups are represented in the FAS will be grouped into a single collective site within the same country
- Step 2 - If not all treatment groups are represented in the FAS for a grouped site, the sites will be grouped with the smallest site within the same country for which all treatment groups are represented in the FAS. If there is more than one such site, the first site in ascending alphabetic order will be selected for the grouping
References

Appendix I
Statistical Analysis Plan
Authentication and Authorisation
Statistical Analysis Plan
Authentication and Authorisation

Study title: Randomised, double-blind, parallel-group, placebo-controlled study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with an acetylcholinesterase inhibitor; Study 3

SAP date: 28 April 2016

This document has been signed electronically. The signatories are listed below.

Authentication

Biostatistician: Ole Michael Lemming
CRS: Ravinder Phul, CRD Neurology Idalopirdine Team

Authorisation

Director, Biostatistics: Anna Karina Trap Huusom
Appendix II
Study Flow Chart
Study Flow Chart

Table 1 Study Procedures and Assessments

<table>
<thead>
<tr>
<th>Visit Window (days relative to nominal visit)</th>
<th>Visit Number</th>
<th>Screening/Baseline Procedures and Assessments</th>
<th>Treatment Period</th>
<th>Completion/Withdrawal</th>
<th>Safety/Withdrawal Follow-up</th>
<th>Drop-out Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>-14 to -1</td>
<td>1</td>
<td>Signed informed consent</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>Diagnosis</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>168</td>
</tr>
<tr>
<td>28/4</td>
<td>3</td>
<td>NINCDS-ADRDA</td>
<td>8</td>
<td>12</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>56/8</td>
<td>4</td>
<td>MMSE</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>84/12</td>
<td>5</td>
<td>Disease-specific history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126/18</td>
<td>6</td>
<td>NINDS-AIREN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168/24</td>
<td>7</td>
<td>Relevant history (social, medical, psychiatric, neurological)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196/28</td>
<td>8</td>
<td>Years of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168/24</td>
<td>9</td>
<td>Magnetic resonance imaging/Computerised tomography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demographics (age, sex, race)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nicotine and alcohol use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blood sampling for genotyping ApoE, CYP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion/exclusion criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Randomisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Screening/Baseline Procedures and Assessments

- Signed informed consent
- Diagnosis
- NINCDS-ADRDA
- MMSE
- Disease-specific history
- NINDS-AIREN
- Relevant history (social, medical, psychiatric, neurological)
- Years of education
- Magnetic resonance imaging/Computerised tomography
- Demographics (age, sex, race)
- Nicotine and alcohol use
- Height
- Blood sampling for genotyping ApoE, CYP
- Inclusion/exclusion criteria
- Randomisation

Efficacy Assessments

- ADAS-Cog
- ADCS-ADL
- ADCS-CGIC
- NPI
<table>
<thead>
<tr>
<th>Visit</th>
<th>Screening</th>
<th>Baseline</th>
<th>Treatment Period</th>
<th>Completion/Withdrawal</th>
<th>Safety/Withdrawal Follow-up</th>
<th>Drop-out Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit Window (days relative to nominal visit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visit Number</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Day<sup>a</sup>/End of Week</td>
<td>-14 to -1</td>
<td>0</td>
<td>28/4</td>
<td>56/8</td>
<td>84/12</td>
<td>126/18</td>
</tr>
<tr>
<td>Visit Window<sup>f</sup> (days relative to nominal visit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±7d</td>
<td>±7d</td>
<td>±7d</td>
<td>±7d</td>
<td>+7d</td>
<td>±7d</td>
</tr>
</tbody>
</table>

Pharmacoeconomic Assessments
- RUD-Lite: √
- EQ-5D-3L: √
- Dependence scale: √

Pharmacokinetic Assessments^j
- Blood sampling for Lu AE58054 and AChEi: √

Exploratory Biomarker Assessments
- Blood sampling for pharmacogenetics (optional): √

Safety Assessments
- Adverse events: √
- Blood and urine sampling for clinical safety laboratory tests: √
- Vital signs, weight, ECGs: √
- Examinations (physical, psychiatric, neurological): √
- C-SSRS: √

Other Study Procedures
- IMP and donepezil hydrochloride dispensed: √
- IMP and donepezil hydrochloride returned, accountability tracked: √
- Rivastigmine/galantamine accountability tracked: √
- Recent and concomitant medication: √
- Patient identification card dispensed: √
- Patient identification card returned: √

LU Study Number: 14863A
Trial Site Number: Study Level
Photo ID: CLI_00651838
Status: Final
Version: 1.0
a. This visit should take place as soon as possible after the patient withdraws from the study.

b. Patients who complete the study will have a Safety Follow-up Visit (no efficacy assessments) which is at least 4 weeks (+7 days) after last dose of IMP. Patients withdrawn will likewise be followed-up 4 weeks (+7 days) after withdrawal except for those who withdraw their consent. This follow-up will include safety and selected efficacy assessments. Patients who withdraw their consent should still have a safety follow-up (without efficacy assessment) but the visit must only be recorded in the medical records.

c. Withdrawn patients, except for those who withdraw their consent or discontinue their participation to the study at or after Week 18 (Visit 6), will be scheduled for a Drop-out Retrieval Visit.

d. All assessments can be completed over a maximum of two consecutive days, in this case the first day should be considered as the visit day of the study. Note: If a visit takes place over two consecutive days the IMP should be dispensed on the second day, after all assessments have been performed. For visits other than the Baseline visit, the visit window must allow for the previously dispensed IMP to last for both visit days.

e. Projected Week 24 Visit, the visit that the patient should have been attending, provided he/she had not been withdrawn from the study.

f. If the date of a patient visit does not conform to the study plan, subsequent visits should be planned to maintain the visit schedule relative to Randomisation/Baseline. The number of days between two visits (except for the Drop-out Retrieval Visit) must not exceed the number of days for which IMP is provided in the wallet cards.

g. A scan performed within the previous 12 months may be used to assess eligibility. If no such scan is available, the Magnetic Resonance Imaging (MRI)/Computerised tomography (CT) should be performed at the Screening Visit or between the Screening and the Baseline Visit. No central reading will be done.

h. Blood sampling for determining genetic variation for apolipoprotein E (ApoE3, ApoE4) and cytochrome P450 drug metabolising enzymes (CYP2C19, CYP2D6) will be done at the Baseline Visit.

i. At the Safety Follow-up Visit, efficacy assessments will be performed only for patients withdrawn from the study.

j. Sampling for drug bioanalysis is an integrated part of the study and is covered by the main Patient Information Sheet. These blood samples should preferably be collected with the safety laboratory samples, as appropriate.

k. Sampling for pharmacogenetics is optional and a separate Patient Information Sheet covers this analysis. This sampling should preferably be at the Baseline Visit but may be collected at any visit that includes a clinical safety laboratory sample.

l. Signs and symptoms present at screening and/or baseline (before IMP intake) must be recorded on an Adverse Event Form.

m. Only for adverse events ongoing at Completion/Withdrawal and new SAEs.

n. Only for adverse events ongoing at previous visit and new SAEs which are considered as possibly/probably related to IMP by investigator.

o. As base treatment, only donepezil hydrochloride 10 mg/day will be dispensed as wallet cards. Rivastigmine and galantamine should be prescribed and the investigator should make sure that the patient has an adequate supply of AChEI, including 24-week double blind treatment period.

p. For tracking of accountability with rivastigmine and galantamine, the used package/blister/bottle should be returned to the investigator and should be available for verification of accountability data at any time.

q. Only for concomitant medications ongoing at the day of the Drop-out Retrieval Visit.

r. Patient Identification Card should only be returned after the last dose of IMP has been taken, that is at the end of the treatment period.
Appendix III

SAS® Code
The SAS code for the primary MMRM-analysis will be:

```sas
%** MMSTR-MMSE stratum, BTSTR-base treatment stratum;
proc mixed noclprint data=ADAS ic method=REML;
   class usubjid country analysis_week armcd MMSTR BTSTR;
   model ADASTOT_DL = ADASTOT_BL MMSTR BTSTR country armcd analysis_week armcd*analysis_week MMSTR*analysis_week BTSTR*analysis_week ADASTOT_BL*analysis_week/s DDFM=KR;
   repeated analysis_week/subject=usubjid type=un;
   lsmeans armcd*analysis_week/ diff cl alpha=0.05;
run;
```

The SAS code for the sensitivity analysis using a pattern mixture model will be:

```sas
%** Prepare data on the form needed for proc MI: ;
%** one column for each visit Week 4, 12, and 24 ;
proc transpose data=ADAS out=ADAS_w prefix=ADASTOT_DL_w;
   var ADASTOT_DL;
   by usubjid country armcd MMSTR BTSTR ADASTOT_BL;
   id analysis_week;
run;

%**Impute non-monotone missing observation to make sure that datasets only has monotone missing values left;
proc mi data = ADAS_w; by armcd MMSTR BTSTR; run;

proc mi data=ADAS_w out = AllMono nimp=200 seed=817345;
   by armcd MMSTR BTSTR;
   var ADASTOT_BL ADASTOT_DL_w4 ADASTOT_DL_w12 ADASTOT_DL_w24;
   mcmc chain = multiple impute = monotone;
   ods output MissPattern=mp;
run;

%**Impute monotone missing values, using pattern in the placebo group (armcd='A');
%*** Do one imputation per imputed dataset from previous step, i.e nimp=1 in this step;
proc mi data=AllMono seed=643874 nimp=1 out=out_mi;
   class armcd country MMSTR BTSTR;
   monotone reg ();
   mnar model( ADASTOT_DL_w4 ADASTOT_DL_w12 ADASTOT_DL_w24 /modelobs= (armcd='A'));
   * use mnar specification to impute from a model determined by the modelobs= parameter;
   var country MMSTR BTSTR ADASTOT_BL ADASTOT_DL_w4 ADASTOT_DL_w12 ADASTOT_DL_w24;
run;

%**Prepare data for MMRM analysis ;
%**If not withdrawn from treatment (COMPLFL=1), imputed monotone values will be reset to missing;
%**Note, lastweek is >=4, since analysis will be based on the same patients as in the primary analysis where patients without valid post-baseline obs are excluded;
data out_mi_Anl(drop=ADASTOT_DL_w4 ADASTOT_DL_w12 ADASTOT_DL_w24);
   set out_mi;
   analysis_week=4 ;
   ADASTOT_DL=ADASTOT_DL_w4;
   output;
```
analysis_week=12;
if complfl=1 and lastweek=4 then ADASTOT_DL=.;
else ADASTOT_DL=ADASTOT_DL_w12;
output;
analysis_week=24;
if complfl=1 and lastweek IN (4 12) then ADASTOT_DL=.;
else ADASTOT_DL=ADASTOT_DL_w24;
output;
run;

proc sort data=out_mi_Anl; by _Imputation_ usubjid analysis_week; run;

%**MMRM-analysis by imputed datasets using the same model as in the primary analysis;
proc mixed noclprint data = out_mi_Anl ic method=REML;
 by _imputation_;
 class usubjid country analysis_week Armcd MMSSTR BTS;
 model ADASTOT_DL = ADASTOT_BL MMSSTR BTS country armcd analysis_week
 armcd*analysis_week MMSSTR*analysis_week BTS*analysis_week
 ADASTOT_BL*analysis_week/s DDFM=KR;
 repeated analysis_Week/subject=usubjid type=un;
 lsmeans Armcd*analysis_Week/ diff cl alpha=0.05;
 ods output diffs=MIdiffs;
 ods output LSMeans=MILSM;
run;

%**Combines the results of the analyses of the 200 complete datasets generated by simulations;
%**Note that the treatment effect is reversed (PBO-active);
proc sort data=MIdiffs(where=(analysis_week=24 and analysis_week=_analysis_week
and armcd='A')) out=MIdiffs2;
 by _armcd;
run;

proc mianalyze parms= MIdiffs2;
 by _armcd;
 modeleffects armcd*analysis_week;
 ods output ParameterEstimates = MIdiffs_ana;
run;
Appendix IV

PCS Criteria
PCS Criteria

Table 2 PCS Criteria for Clinical Safety Laboratory Tests

<table>
<thead>
<tr>
<th>CDISC term</th>
<th>Test (units)</th>
<th>PCS Low</th>
<th>PCS High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>S-aspartate aminotransferase (IU/L)</td>
<td>$\geq 3 \times \text{ULN}$</td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td>S-alanine aminotransferase (IU/L)</td>
<td>$\geq 3 \times \text{ULN}$</td>
<td></td>
</tr>
<tr>
<td>BILI</td>
<td>S-bilirubin ($\mu\text{mol/L}$)</td>
<td>≥ 34</td>
<td></td>
</tr>
<tr>
<td>BILDIR</td>
<td>S-direct bilirubin ($\mu\text{mol/L}$)</td>
<td>≥ 12</td>
<td></td>
</tr>
<tr>
<td>ALP</td>
<td>S-alkaline phosphatase (IU/L)</td>
<td>$\geq 3 \times \text{ULN}$</td>
<td></td>
</tr>
<tr>
<td>GGT</td>
<td>S-gamma glutamyl transferase (IU/L)</td>
<td>≥ 200</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREAT</td>
<td>S-creatinine ($\mu\text{mol/L}$)</td>
<td>$\geq 1.5 \times \text{ULN}$</td>
<td></td>
</tr>
<tr>
<td>BUN</td>
<td>B-urea nitrogen (mmol/L)</td>
<td>≥ 11</td>
<td></td>
</tr>
<tr>
<td>Electrolytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SODIUM</td>
<td>S-sodium (mmol/L)</td>
<td>≤ 125</td>
<td>≥ 155</td>
</tr>
<tr>
<td>K</td>
<td>S-potassium (mmol/L)</td>
<td>≤ 3.0</td>
<td>≥ 6.0</td>
</tr>
<tr>
<td>CA</td>
<td>S-calcium (mmol/L)</td>
<td>≤ 1.8</td>
<td>≥ 3.0</td>
</tr>
<tr>
<td>BICARB</td>
<td>S-bicarbonate (mmol/L)</td>
<td>≤ 12</td>
<td>≥ 38</td>
</tr>
<tr>
<td>Endocrine/Metabolic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLUC</td>
<td>Serum glucose (mmol/L)</td>
<td>≤ 3.9</td>
<td>≥ 11.1</td>
</tr>
<tr>
<td>GLUC</td>
<td>Serum glucose, fasting (mmol/L)</td>
<td>≤ 3.5</td>
<td>≥ 7.0</td>
</tr>
<tr>
<td>TSH</td>
<td>S-thyrotropin (mIU/L)</td>
<td>≤ 0.3</td>
<td>≥ 5.5</td>
</tr>
<tr>
<td>ALB</td>
<td>Albumin (g/L)</td>
<td>≤ 27</td>
<td></td>
</tr>
<tr>
<td>Lipids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOL</td>
<td>S-cholesterol (mmol/L)</td>
<td>≥ 7.8</td>
<td></td>
</tr>
<tr>
<td>CHOL</td>
<td>S-Cholesterol, fasting (mmol/L)</td>
<td>≥ 6.2</td>
<td></td>
</tr>
<tr>
<td>TRIG</td>
<td>Triglycerides (mmol/L)</td>
<td>≥ 5.65</td>
<td></td>
</tr>
<tr>
<td>TRIG</td>
<td>Triglycerides, fasting (mmol/L)</td>
<td>≥ 4.2</td>
<td></td>
</tr>
<tr>
<td>Haematology/Coagulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INR</td>
<td>P-INR (Prothrombin ratio)</td>
<td>≤ 75</td>
<td>≥ 2.0</td>
</tr>
<tr>
<td>PLAT</td>
<td>B-thrombocytes platelet count ($\times 10^9$/L)</td>
<td>≤ 600</td>
<td></td>
</tr>
<tr>
<td>HGB</td>
<td>B-haemoglobin (g/dL)</td>
<td>≤ 9.5 (women)</td>
<td>≤ 11.5 (men)</td>
</tr>
<tr>
<td>RBC</td>
<td>B-erythrocytes ($\times 10^12$/L)</td>
<td>≤ 3.5 (women)</td>
<td>≤ 3.8 (men)</td>
</tr>
<tr>
<td>WBC</td>
<td>B-Leukocytes ($\times 10^9$/L)</td>
<td>≤ 2.8</td>
<td>≥ 16</td>
</tr>
<tr>
<td>NEUTLE</td>
<td>B-Neutrophils/leukocytes (%)</td>
<td>≤ 20</td>
<td>≥ 85</td>
</tr>
<tr>
<td>EOSLE</td>
<td>B-eosinophils/leukocytes (%)</td>
<td>≥ 10</td>
<td></td>
</tr>
<tr>
<td>CDISC term</td>
<td>Test (units)</td>
<td>PCS Low</td>
<td>PCS High</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>BASOLE</td>
<td>B-basophils/leukocytes (%)</td>
<td>≥ 10</td>
<td></td>
</tr>
<tr>
<td>LYMLE</td>
<td>B-Lymphocytes/leukocytes (%)</td>
<td>≤ 10</td>
<td>≥ 75</td>
</tr>
<tr>
<td>MONOLE</td>
<td>B-Monocytes /leukocytes (%)</td>
<td></td>
<td>≥ 15</td>
</tr>
<tr>
<td>Infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td>S-C-reactive protein (mg/L)</td>
<td></td>
<td>≥ 25</td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLUC</td>
<td>U-Glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KETONES</td>
<td>U-Ketones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCCBLD</td>
<td>U-Occult Blood</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 PCS Criteria for Vital Signs and Weight (Change)

<table>
<thead>
<tr>
<th>CDISC term</th>
<th>Parameter (units)</th>
<th>PCS Low</th>
<th>PCS High</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT</td>
<td>Weight (kg)</td>
<td>Decrease ≥ 7%</td>
<td>Increase ≥ 7%</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index (kg/m²)</td>
<td>Decrease ≥ 7%</td>
<td>Increase ≥ 7%</td>
</tr>
<tr>
<td>DIABP</td>
<td>Supine diastolic blood pressure (mmHg)</td>
<td>≤ 50 and decrease ≥ 15</td>
<td>≥ 105 and increase ≥ 15</td>
</tr>
<tr>
<td>SYSBP</td>
<td>Supine systolic blood pressure (mmHg)</td>
<td>≤ 90 and decrease ≥ 20</td>
<td>≥ 180 and increase ≥ 20</td>
</tr>
<tr>
<td>PULSE</td>
<td>Pulse rate, supine/sitting/unknown (beats/min)</td>
<td>≤ 50 and decrease ≥ 15</td>
<td>≥ 120 and increase ≥ 15</td>
</tr>
</tbody>
</table>
Table 4 PCS Criteria for ECG Parameters

<table>
<thead>
<tr>
<th>CDISC term</th>
<th>Parameter (units)</th>
<th>PCS Low</th>
<th>PCS High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Time Interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRMEAN</td>
<td>PR interval (msec)</td>
<td>≥ 260</td>
<td></td>
</tr>
<tr>
<td>QRSDUR</td>
<td>QRS interval (msec)</td>
<td>≥ 150</td>
<td></td>
</tr>
<tr>
<td>QTMEAN</td>
<td>QT interval (msec)</td>
<td>≥ 500</td>
<td></td>
</tr>
<tr>
<td>Derived Time Interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QTCB</td>
<td>QTcB interval (msec)</td>
<td>< 300</td>
<td>> 500 or increase > 60</td>
</tr>
<tr>
<td>QTCF</td>
<td>QTcF interval (msec)</td>
<td>< 300</td>
<td>> 500 or increase > 60</td>
</tr>
<tr>
<td>HRMEAN</td>
<td>ECG Mean heart rate (beats/min)</td>
<td>≤ 50 and decrease ≥ 15</td>
<td>≥ 120 and increase ≥ 15</td>
</tr>
</tbody>
</table>
Electronic Signature Page

Full Title
Randomized, double-blind, parallel-group, placebo-controlled, fixed-dose study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with donepezil; study 3

Short Title
14863A - Statistical Analysis Plan Amendment - 1

Study Number
14863A

The following persons have electronically signed this document

<table>
<thead>
<tr>
<th>Server Date and Time</th>
<th>Signed by</th>
<th>Reason for Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-Oct-2016 13:58:38</td>
<td>LLRA Lars Lau Raket</td>
<td>Biostatistic Approval</td>
</tr>
<tr>
<td>16-Oct-2016 18:20:03</td>
<td>AKTH Anna Karina Trap Huusom</td>
<td>Management Approval</td>
</tr>
<tr>
<td>17-Oct-2016 09:48:50</td>
<td>RP Ravinder Phul</td>
<td>Clinical Approval</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final: Version 1.0
PLUTO ID: CLI_00880822
Statistical Analysis Plan – Amendment 1

Randomized, double-blind, parallel-group, placebo-controlled, fixed-dose study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with donepezil; study 3

Idalopirdine

Study No.: 14863A
Sponsor: H. Lundbeck A/S (Lundbeck)
2500 Valby (Copenhagen), Denmark
Biostatistician: Lars Lau Raket, Biostatistics
SAP date: 28 April 2016
SAP Amendment date: 6 October 2016

This document is the property of H. Lundbeck A/S and H. Lundbeck A/S is the holder of any and all related intellectual property rights, including, but not limited to, copyrights. This document is confidential. It is not to be copied or distributed to other parties without prior written authorisation from H. Lundbeck A/S.
1 Rationale for this SAP Amendment

This amendment contains two additions to the SAP. First, an additional specification of a subgroup of special interest (base treatment stratum), and secondly, a detailed description of how to compute adjusted p-values in the testing hierarchy described in the SAP. The latter does not represent any changes in planned analyses or methodology, but is an elaboration of the methods used in connection with the described testing strategy. The reason for the latter part of this amendment is that the described methodology is not considered standard.

2 Change to Subgroup Analyses and Model Assumptions for Analysis of the Primary Endpoint

2.1 Page 19, Section 10.2.3

Existing Text:

The subgroups of special interest are (ranked in the listed order):
- MMSE stratum
- Apathy (yes/no), where apathy is defined as Baseline NPI item apathy score >0
- Age groups (age <85 and age ≥85 years)

Replaced By:

The subgroups of special interest are (ranked in the listed order):
- MMSE stratum
- Base treatment stratum
- Apathy (yes/no), where apathy is defined as Baseline NPI item apathy score >0
- Age groups (age <85 and age ≥85 years)

Justification for this change: The different base treatments allowed in the study represent an important design factor similarly to MMSE stratum.

3 Computing adjusted p-values

The testing strategy for 14863A is displayed in Panel 1 using the graphical approach of Bretz et al.1 The weights on the arrows indicate the proportion of α that is transferred when the test is significant. If no weights are given the full available significance level is transferred. An adjusted p-value at a given location in Panel 1 is the minimal significance level α that, respecting the test hierarchy, would make the corresponding raw p-value significant. Computing adjusted p-values is not straightforward because of the testing graph and the Hochberg correction.2 The Hochberg correction is valid because of the positive dependence of
the corresponding test statistics and improves conventional Bonferroni-type corrections by allowing for simultaneous testing the two hypotheses at the full available significance level.

Panel 1 Testing strategy

The adjusted p-values are computed as

\[\hat{p}_1 = p_1 \]

\[\hat{p}_2 = \max(\hat{p}_1, \min(2p_2, \max(p_2, p_3))) \]

\[\hat{p}_3 = \max(\hat{p}_1, \min(2p_3, \max(p_2, p_3))) \]

The rationale for the structure of the adjusted p-values for the key secondary endpoints is as follows. The outer maximum arises because the testing hierarchy dictates that the corrected p-values cannot be less than the adjusted p-value for the primary endpoint (\(\alpha\) can only be transferred once the hypothesis is rejected). The adjusted p-value is the least \(\alpha\) level that makes the observed p-value significant, this can either happen by means of the Bonferroni corrected level (half \(\alpha\) level) or in terms of the Hochberg correction (which includes simultaneous testing both p-values at full \(\alpha\) level).

The overall adjusted p-value is the least \(\alpha\) that would make the primary and one of the key secondary endpoints significant, in other words, the minimum of the adjusted p-values for the key secondary endpoints

3.1 Example (made-up data)

The procedure for correcting adjusted p-values is illustrated in the figure below on a set of made up raw p-values.
In this setup, the overall adjusted p-value 0.040 is equal to the combined p-value for all endpoints.

3.2 References

Statistical Analysis Plan – Amendment 1
Authentication and Authorisation

Study title: Randomized, double-blind, parallel-group, placebo-controlled, fixed-dose study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with donepezil; study 3

Study No.: 14863A
SAP Amendment date: 6 October 2016

This document has been signed electronically. The signatories are listed below.

Authentication

Biostatistician: Lars Lau Raket
Clinical research scientist: Ravinder Phul, CRD Neurology

Authorisation

Head of Biostatistics: Anna Karina Trap Huusom
Electronic Signature Page

Full Title
Randomized, double-blind, parallel-group, placebo-controlled study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with an acetylcholinesterase inhibitor; study 3

Short Title
14863A - Statistical Analysis Plan Amendment - 2

Study Number 14863A

The following persons have electronically signed this document:

<table>
<thead>
<tr>
<th>Server Date and Time</th>
<th>Signed by</th>
<th>Reason for Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-Nov-2016 14:47:22</td>
<td>RP Ravinder Phul</td>
<td>Clinical Approval</td>
</tr>
<tr>
<td>29-Nov-2016 17:13:42</td>
<td>AKTH Anna Karina Trap Huusom</td>
<td>Management Approval</td>
</tr>
<tr>
<td>02-Dec-2016 13:34:18</td>
<td>RZN Rebecca Zachariae Nielsen</td>
<td>Biostatistic Approval</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final: Version 1.0
PLUTO ID: CLI_00914354
Statistical Analysis Plan – Amendment 2

Randomized, double-blind, parallel-group, placebo-controlled study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with acetylcholinesterase inhibitor; study 3

Idalopirdine

Study No.: 14863A
Sponsor: H. Lundbeck A/S (Lundbeck)
2500 Valby (Copenhagen), Denmark
Biostatistician: Rebecca Zachariae Nielsen, Biostatistics
SAP date: 29 April 2016
SAP Amendment date: 29 November 2016

This document is the property of H. Lundbeck A/S and H. Lundbeck A/S is the holder of any and all related intellectual property rights, including, but not limited to, copyrights. This document is confidential. It is not to be copied or distributed to other parties without prior written authorisation from H. Lundbeck A/S.
1 Rationale for this SAP Amendment

This amendment specifies additional efficacy analyses of key interest. The analyses are similar to the mixed-model repeated-measurements (MMRM) analyses for the primary and key secondary endpoints specified in the statistical analysis plan, but include additional baseline or screening covariates. The rationale for including the additional covariates is that they have been found to be predictive of change from baseline at week 24 based on data from other studies, and thus these analyses increase the power of detecting treatment effects.

2 Additional Efficacy Analyses of Key Interest

The additional efficacy analyses of key interest follow the MMRM methodology for the primary and key secondary endpoints described in Chapter 10 of the Statistical Analysis Plan.

For the MMRM analysis of the primary endpoint specified in Section 10.2.1 of the statistical analysis plan, an analysis is added using the same model that in addition includes an MMSE total score at screening-by-week interaction, an MMSE total score at baseline-by-week interaction, and an ADAS-cog total score at screening-by-week interaction.

For the MMRM analyses of the key secondary endpoints specified in Section 10.3.1 of the statistical analysis plan, an additional analysis for each endpoint is added. The analyses use the same model as specified in Section 10.3.1, but furthermore include an MMSE total score at screening-by-week interaction and an MMSE total score at baseline-by-week interaction.
Statistical Analysis Plan – Amendment 2

Authentication and Authorisation

Study title: Randomized, double-blind, parallel-group, placebo-controlled study of Lu AE58054 in patients with mild-moderate Alzheimer’s disease treated with acetylcholinesterase inhibitor; study 3

Study No.: 14863A

SAP Amendment date: 29 November 2016

This document has been signed electronically. The signatories are listed below.

Authentication

Biostatistician: Rebecca Zachariae Nielsen

Clinical research scientist/Clinical pharmacology scientist: Ravinder Phul, CRD Neurology

Authorisation

Head of Biostatistics: Anna Karina Trap Huusom