Supplementary Online Content

eFigure 1. Study Design
eFigure 2. Proportion of Patients Receiving Treatment With Osteoporosis Medications by Instrumental Variable Strata
eFigure 3. Cumulative Regression Function With Pointwise 95% Confidence Interval for the Treatment Effect Under the Additive Hazard Model
eTable. Components of the Composite Outcome
eAppendix. Model Equations

This supplementary material has been provided by the authors to give readers additional information about their work.
eFigure 1. Study Design

Continuous enrollment (6 months) → 180 days → 180 days → Follow-up (Censored at switch or disenrollment) → Fracture

10 non-treated episodes matched for each treated

Cohort entry date: Hospitalization with Hip fracture

Osteoporosis prescription

No osteoporosis Medication use
eFigure 2. Proportion of Patients Receiving Treatment With Osteoporosis Medications by Instrumental Variable Strata

IV1: Calendar year

IV2: Specialist access

IV3: Geographic variation

IV4: Provider preference

© 2018 American Medical Association. All rights reserved.
eFigure 3. Cumulative Regression Function With Pointwise 95% Confidence Interval for the Treatment Effect Under the Additive Hazard Model
eTable. Components of the Composite Outcome

<table>
<thead>
<tr>
<th>Fracture</th>
<th>Definition/codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Humerus</td>
<td>Humerus fracture diagnosis (ICD-9: 812.xx, 733.11) AND procedure within 30 days of fracture date (ICD-9: 78.52, 79.01, 79.11, 79.21, 79.31, 79.61; CPT-4: 23600, 23605, 23610, 23615, 23620, 23625, 23630, 23665, 23670, 23680, 24500, 24505, 24506, 24510, 24515, 24530, 24531, 24535, 24536, 24538, 24540, 24542, 24545, 24560, 24565, 24570, 24575, 24581, 24583, 24585-8, 24516)</td>
</tr>
<tr>
<td>2. Radius and/or Ulna</td>
<td>Radius/ulna fracture diagnosis (ICD-9: 813.xx, 733.12) AND procedure within 30 days of fracture date (ICD-9: 78.53, 79.02, 79.12, 79.22, 79.32, 79.62; CPT-4: 24620, 24625, 24635, 24650, 24655, 24660, 24665-6, 24670, 24680, 24685, 25500, 25505, 25510, 25515, 25530, 25535, 25540, 25545, 25560, 25565, 25570, 25575, 25600, 25605, 25610-1, 25615, 25620, 25650)</td>
</tr>
<tr>
<td>4. Pelvis</td>
<td>Pelvis fracture diagnosis (ICD-9: 808.xx)</td>
</tr>
</tbody>
</table>

Codes used for identification of confounding variables: Osteoporosis diagnosis (ICD-9-CM codes 733.0x), presence of bone mineral density test (CPT code 77080, 77085), Parkinson’s disease (ICD-9-CM codes 332.xx or 333.0x), Alzheimer’s disease or other dementia (ICD-9-CM codes 290.xx, 294.xx, 330.xx, 331.xx), obesity (ICD-9-CM codes 278.0x, 649.1x, V85.3x, V85.4x), diabetes mellitus (ICD-9-CM codes 250.xx), rheumatoid arthritis (ICD-9 codes 714.x), or history of falls, syncope, or gait abnormality (ICD-9-CM codes E885, E885.9x, E888.xx, 780.2x, 458.0x, 781.2x, 782.3x)
eAppendix. Model Equations

1. **Mixed effect models for calculating adjusted rates of treatment for creating geographic and provider preference IVs**

 \[
 \text{logit} \left(P(Y_{ij} = 1|\text{Age}_i, \text{Gender}_i, \text{Random effect}_j^*) \right) = \beta_0 + \beta_1 \text{Age}_i + \beta_2 \text{Gender}_i + \beta_3 j
 \]

 * MSA Region was the random variable for IV3 and Primary provider was the random variable for IV4

 \(Y_{ij} \) = treatment initiation status in individual i in region j (or with provider j)

 \(\beta_0 = \text{Fixed intercept} \)

 \(\beta_1 = \text{Age co-efficient} \)

 \(\beta_2 = \text{Gender co-efficient} \)

 \(\beta_3 j = \text{Random intercept specific to region j (or provider j)} \)

2. **First stage instrumental variable models**

 \[
 \Pr(A_i = 1|IV = IV_i, X = x_i) = \frac{\exp(\beta_0 + \beta_1 IV_i + \sum_{k=2}^{n} \beta_k x_{k,i})}{1 + \exp(\beta_0 + \beta_1 IV_i + \sum_{k=2}^{n} \beta_k x_{k,i})}
 \]
\[\text{Pr}(A_i = 1|IV = IV_i, X = x_i) = \text{Probability of osteoporosis medication initiation given covariates and instrumental variable values for each individual } i \]

\[\beta_0 = \text{Intercept} \]
\[\beta_1 = \text{IV co-efficient} \]
\[\beta_k = \text{Co-efficients (}\beta_2 \text{ through } \beta_n\text{) for predictor variables} \]
\[x_{k,i} = \text{Covariate values for individual } i \]

3. **Second stage instrumental variable model (Additive hazards model)**

\[h(t|A, X) = h_0(t) + \beta_1(t)A + \beta_2(t)\Delta + \sum_{k=3}^{n} \beta_k(t)x_k \]

\[h_0(t) = \text{baseline hazard} \]
\[\beta_1 = \text{Treatment effect estimate} \]
\[A = \text{Actually received treatment} \]
\[\beta_2(t)\Delta = \text{Control function which is meant to capture variation in the hazard function due to unobserved correlates of the treatment;} \]
\[\text{where } \Delta = A - \Pr(A_i = 1|IV = IV_i, X = x_i) \]
\[\beta_k = \text{Co-efficients for other covariates in the model} \]