Supplementary Online Content

eMethods. Equation
eTable 1. Participant demographic information
eTable 2. SDs of the residuals for straight line and cosine wave
eTable 3. Effect of age on Aβ42 amplitude and linear rise
eTable 4. Spearman correlations between cerebrospinal fluid Aβ concentrations, fractional turnover rates, and production rates
eTable 5. Summary of serial cerebrospinal fluid Aβ sampling human studies
eFigure 1. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 1
eFigure 2. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 2
eFigure 3. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 3
eFigure 4. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 4
eFigure 5. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 5
eFigure 6. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 6
eFigure 7. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 7
eFigure 8. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 8
eFigure 9. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 9
eFigure 10. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 10

© 2016 American Medical Association. All rights reserved.
eFigure 11. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 11

eFigure 12. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 12

eFigure 13. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 13

eFigure 14. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 14

eFigure 15. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 15

eFigure 16. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 16

eFigure 17. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 17

eFigure 18. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 18

eFigure 19. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 19

eFigure 20. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 20

eFigure 21. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 21

eFigure 22. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 22

eFigure 23. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 23

eFigure 24. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 24

eFigure 25. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 25
eFigure 26. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 26

eFigure 27. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 27

eFigure 28. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 28

eFigure 29. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 29

eFigure 30. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 30

eFigure 31. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 31

eFigure 32. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 32

eFigure 33. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 33

eFigure 34. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 34

eFigure 35. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 35

eFigure 36. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 36

eFigure 37. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 37

eFigure 38. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 38

eFigure 39. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 39

eFigure 40. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 40

© 2016 American Medical Association. All rights reserved.
eFigure 41. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 41

eFigure 42. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 42

eFigure 43. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 43

eFigure 44. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 44

eFigure 45. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 45

eFigure 46. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 46

eFigure 47. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 47

eFigure 48. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 48

eFigure 49. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 49

eFigure 50. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 50

eFigure 51. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 51

eFigure 52. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 52

eFigure 53. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 53

eFigure 54. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 54

eFigure 55. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 55
eFigure 56. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 56

eFigure 57. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 57

eFigure 58. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 58

eFigure 59. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 59

eFigure 60. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 60

eFigure 61. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 61

eFigure 62. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 62

eFigure 63. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 63

eFigure 64. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 64

eFigure 65. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 65

eFigure 66. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 66

eFigure 67. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 67

eFigure 68. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 68

eFigure 69. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 69

eFigure 70. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 70

© 2016 American Medical Association. All rights reserved.
eFigure 71. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 71

eFigure 72. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 72

eFigure 73. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 73

eFigure 74. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 74

eFigure 75. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 75

eFigure 76. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 76

eFigure 77. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 77

eFigure 78. Association between Aβ amplitude and linear rise with mean cortical binding potential

This supplementary material has been provided by the authors to give readers additional information about their work.
eMethods. Equation

\[
\frac{\text{Aβ42 PR}}{\text{Aβ40 PR}} = \frac{[\text{Aβ42}]}{[\text{Aβ40}]} \left(\frac{\text{FTR Aβ42}}{\text{FTR Aβ40}} \right)
\]

Complementary associations between β-amyloid fractional turnover rates, concentrations, production rates, and cosinor parameters are expected since the kinetic parameters are interrelated based on this equation.
eTable 1. Participant demographic information

<table>
<thead>
<tr>
<th></th>
<th>Amyloid Negative</th>
<th>Amyloid Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>Age, years*</td>
<td>71.8 ± 5.8 (62.2-87.7)</td>
<td>73.4 ± 7.3 (60.4-85.8)</td>
</tr>
<tr>
<td>Weight, kg*</td>
<td>79.8 ± 16.4 (53.1-122.5)</td>
<td>75.4 ± 15.3 (42.2-106.6)</td>
</tr>
<tr>
<td>BMI, kg/m²*</td>
<td>27.4 ± 5 (20.1-39.9)</td>
<td>25.8 ± 4.8 (16.5-40.3)</td>
</tr>
<tr>
<td>Sex</td>
<td>20M/19F</td>
<td>26M/12F</td>
</tr>
<tr>
<td>ApoE4 status</td>
<td>5 ApoE4+</td>
<td>27 ApoE4+</td>
</tr>
<tr>
<td>PET PiB status</td>
<td>11 no PET PiB imaging</td>
<td>22 no PET PiB imaging</td>
</tr>
<tr>
<td>MCBP*</td>
<td>0.046 ± 0.047 (-0.04-0.15)</td>
<td>0.69 ± 0.29 (0.26-1.24)</td>
</tr>
<tr>
<td>CSF [Aβ42]:[Aβ40]*</td>
<td>0.168 ± 0.035 (0.07-0.21)</td>
<td>0.096 ± 0.017 (0.061-0.13)</td>
</tr>
<tr>
<td>CDR-SB status</td>
<td>0=27, >0=12</td>
<td>0=6, >0=32</td>
</tr>
</tbody>
</table>

*Mean ± standard deviation (range)

kg: Kilogram
m: Meter
M: male
F: female
ApoE4: apolipoprotein E4
PET: Positron emission tomography
PiB: Pittsburgh Compound B
MCBP: Mean cortical binding potential
CSF: Cerebrospinal fluid
Aβ: Amyloid-beta
CDR-SB: Clinical dementia rating-sum of boxes

© 2016 American Medical Association. All rights reserved.
Table 2. SDs of the residuals for straight line and cosine wave

<table>
<thead>
<tr>
<th></th>
<th>Aβ40</th>
<th>Aβ42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SDR</td>
<td>SD SDR</td>
</tr>
<tr>
<td>Straight line</td>
<td>MS</td>
<td>10.45*</td>
</tr>
<tr>
<td></td>
<td>ELISA</td>
<td>17.52</td>
</tr>
<tr>
<td>Cosine wave</td>
<td>MS</td>
<td>9.67*#</td>
</tr>
<tr>
<td></td>
<td>ELISA</td>
<td>17.1#</td>
</tr>
</tbody>
</table>

Aβ: Amyloid-beta
SDR: Standard deviation of the residuals
SD: Standard deviation
MS: mass spectrometry
ELISA: enzyme-linked immunosorbent assay
*p<0.0001 for MS vs. ELISA comparison by paired two-tailed t-test
#p<0.0001 for straight line vs. cosine wave comparison by paired two-tailed t-test
eTable 3. Effect of age on $\text{A}\beta 42$ amplitude and linear rise

<table>
<thead>
<tr>
<th>Age 60.4-67.6 years</th>
<th>Mean Difference (pM)</th>
<th>Standard Error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.77</td>
<td>5.45</td>
<td>0.007</td>
</tr>
<tr>
<td>Age 67.7-72.9 years</td>
<td>7.46</td>
<td>3.51</td>
<td>0.046</td>
</tr>
<tr>
<td>Age 73.0-78.3 years</td>
<td>6.71</td>
<td>4.58</td>
<td>0.163</td>
</tr>
<tr>
<td>Age 78.4-87.7 years</td>
<td>3.3</td>
<td>2.04</td>
<td>0.125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 60.4-67.6 years</th>
<th>Mean Difference (pM/hr)</th>
<th>Standard Error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.16</td>
<td>0.974</td>
<td>0.041</td>
</tr>
<tr>
<td>Age 67.7-72.9 years</td>
<td>0.942</td>
<td>0.391</td>
<td>0.025</td>
</tr>
<tr>
<td>Age 73.0-78.3 years</td>
<td>0.466</td>
<td>0.415</td>
<td>0.279</td>
</tr>
<tr>
<td>Age 78.4-87.7 years</td>
<td>0.203</td>
<td>0.25</td>
<td>0.428</td>
</tr>
</tbody>
</table>

Mean difference in $\text{A}\beta 42$ amplitude or linear rise between amyloid-negative and amyloid-positive individuals divided by age quartiles
Two-tailed independent samples t-test
Bold: $p<0.05$

Aβ: Amyloid-beta

© 2016 American Medical Association. All rights reserved.
Table 4. Spearman correlations between cerebrospinal fluid β-amyloid concentrations, fractional turnover rates, and production rates

<table>
<thead>
<tr>
<th></th>
<th>Aβ40</th>
<th>Aβ42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Production rate</td>
<td>FTR</td>
</tr>
<tr>
<td>Concentration</td>
<td>0.90**</td>
<td>-0.08</td>
</tr>
<tr>
<td>FTR</td>
<td>-0.06</td>
<td></td>
</tr>
</tbody>
</table>

FTR: fractional turnover rate
Aβ: Amyloid-beta
*=p<0.05
**=p<0.0001
eTable 5. Summary of serial cerebrospinal fluid β-amyloid sampling human studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants (n)</th>
<th>Cognitive Status</th>
<th>Aβ Assay</th>
<th>CSF Sampling Frequency and Volume</th>
<th>Linear Rise</th>
<th>Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bateman et al. 2007</td>
<td>15</td>
<td>Normal</td>
<td>ELISA</td>
<td>6 ml every hour for 36 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al. 2012</td>
<td>46</td>
<td>Mixed</td>
<td>ELISA</td>
<td>6 ml every hour for 36 hours</td>
<td>Attenuated with amyloid deposition</td>
<td>Attenuated with age</td>
</tr>
<tr>
<td>Li et al. 2012</td>
<td>21</td>
<td>Normal</td>
<td>Multiple x</td>
<td>Variable CSF Aβ variability affected by draw frequency and volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moghekar et al. 2012</td>
<td>10</td>
<td>Impaired</td>
<td>ELISA, xMAP</td>
<td>40 ml every 6 hours for 24 or 36 hours</td>
<td>No linear rise</td>
<td>No time-of-day fluctuations</td>
</tr>
<tr>
<td>Slats et al. 2012</td>
<td>12</td>
<td>Mixed</td>
<td>ELISA, xMAP</td>
<td>6 ml every hour for 36 hours</td>
<td>Results confounded by use of bacterial filter on lumbar catheter</td>
<td></td>
</tr>
<tr>
<td>Roh et al. 2012</td>
<td>12</td>
<td>Mixed</td>
<td>ELISA</td>
<td>6 ml every hour for 36 hours</td>
<td>Attenuated with amyloid deposition and AD mutation</td>
<td></td>
</tr>
<tr>
<td>Dobrowolska et al. 2014</td>
<td>49</td>
<td>Mixed</td>
<td>ELISA</td>
<td>6 ml every hour for 36 hours</td>
<td>Attenuated with age and amyloid deposition</td>
<td></td>
</tr>
</tbody>
</table>

© 2016 American Medical Association. All rights reserved.
<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Group</th>
<th>Assay</th>
<th>Time Points</th>
<th>Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ooms et al. 2014*</td>
<td>26</td>
<td>Normal</td>
<td>ELISA, xMAP</td>
<td>6 ml at 7 time points for 19 hours</td>
<td>Control: 6 ml at 7 time points for 19 hours, SD: 6 ml at 11 time points for 19 hours, Concentrations increased in the SD group compared to control</td>
</tr>
<tr>
<td>Lucey et al. 2015#</td>
<td>178</td>
<td>Mixed</td>
<td>Variable</td>
<td>Rate affected by frequency of CSF draws</td>
<td>Varied between studies, most with diurnal pattern</td>
</tr>
<tr>
<td>Van Broeck et al. 2016</td>
<td>18</td>
<td>Normal</td>
<td>Multiplex</td>
<td>Variable</td>
<td>CSF Aβ variability affected by draw frequency and volume</td>
</tr>
<tr>
<td>Lucey et al. (current manuscript)</td>
<td>77</td>
<td>Mixed</td>
<td>MS</td>
<td>6 ml every hour for 36-48 hours</td>
<td>Aβ42 amplitude attenuates with amyloidosis and faster aggregation rates (FTR ratio). Aβ40 by MS not affected by amyloidosis</td>
</tr>
</tbody>
</table>

Aβ: amyloid-β; AD: Alzheimer’s disease; ELISA: enzyme-linked immunosorbent assay; MS: mass spectrometry; SD: sleep-deprived; FTR: fractional turnover rate
*: intervention trial with sleep-deprived and control groups
#: pooled analysis of 17 indwelling lumbar catheter studies
eFigure 1. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 1

© 2016 American Medical Association. All rights reserved.
eFigure 2. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 2
eFigure 3. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 3.
eFigure 4. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 4.
eFigure 5. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 5.
eFigure 6. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 6
eFigure 7. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 7
eFigure 8. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 8.
eFigure 9. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 9
eFigure 10. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 10
eFigure 11. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 11.
eFigure 12. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 12.
eFigure 13. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 13.
eFigure 14. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 14.
eFigure 15. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 15
eFigure 16. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 16.
eFigure 17. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 17
eFigure 18. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 18.
eFigure 19. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 19
eFigure 20. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 20.
eFigure 21. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 21.
eFigure 22. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 22.
eFigure 23. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 23
eFigure 24. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 24
eFigure 25. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 25.
eFigure 26. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 26.
eFigure 27. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 27.
eFigure 28. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 28.
eFigure 29. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 29.
eFigure 30. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 30
eFigure 31. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 31.
eFigure 32. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 32
eFigure 33. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 33.
eFigure 34. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 34
eFigure 35. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 35.
eFigure 36. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 36
eFigure 37. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 37.
eFigure 38. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 38.
eFigure 39. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 39.
eFigure 40. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 40
eFigure 41. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 41
eFigure 42. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 42.

© 2016 American Medical Association. All rights reserved.
eFigure 43. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 43.
eFigure 44. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 44.
eFigure 45. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 45.
eFigure 46. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 46.
eFigure 47. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 47.
eFigure 48. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 48.
eFigure 49. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 49.
eFigure 50. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 50.
eFigure 51. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 51
eFigure 52. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 52
eFigure 53. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 53
eFigure 54. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 54.
eFigure 55. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 55.
eFigure 56. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 56.
eFigure 57. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 57.
eFigure 58. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 58.
eFigure 59. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 59
eFigure 60. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 60.
eFigure 61. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 61.
eFigure 62. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 62
eFigure 63. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 63
eFigure 64. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 64.
eFigure 65. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 65.
eFigure 66. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 66.
eFigure 67. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 67.
eFigure 68. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 68
eFigure 69. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 69.
eFigure 70. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 70
eFigure 71. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 71.
eFigure 72. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 72.
eFigure 73. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 73
eFigure 74. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 74.
eFigure 75. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 75.
eFigure 76. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 76.
eFigure 77. Cosine wave best fit lines for Aβ40 and Aβ42 measured by mass spectrometry (MS) and enzyme-linked immunosorbent assay (ELISA) in participant 77.
eFigure 78. Association between Aβ amplitude and linear rise with mean cortical binding potential

A. Aβ42 amplitude (pM) vs. MCBP. The horizontal dashed line is at 15 pM. B. Aβ42 linear rise (pM/hr) vs. MCBP. C. Aβ40 amplitude (pM) vs. MCBP. The horizontal dashed line is at 200 pM. D. Aβ40 linear rise (pM/hr) vs. MCBP. The vertical dashed line is MCBP=0.18, the cutoff for amyloid-negative (<0.18) or amyloid-positive (>0.18). Amyloid-negative (blue) and amyloid-positive (red) participants are shown. Aβ: amyloid-beta; MCBP: mean cortical binding potential; pM: picomolar; hr: hour.