Supplementary Online Content

eFigure. Flowchart Detailing the Inclusion and Exclusion Criteria and Numbers of the Study Subjects

eTable 1. Logistic Regression Analyses of the Relationship Between BMD and IA Size Larger Than 3 mm in At-Risk Population (Tertile 3 vs Tertile 1-2)
eTable 2. Logistic Regression Analyses of the Relationship Between BMD and Multiplicity of IA (Tertile 3 vs Tertile 1-2)
eTable 3. Linear Regression Analyses of the Relationship Between Low T-score and Log Size of IA in At-risk Population

This supplementary material has been provided by the authors to give readers additional information about their work.
eFigure. Flowchart detailing the inclusion and exclusion criteria and numbers of the study subjects

Subjects who underwent comprehensive medical checkup including MRA and DXA (n = 14,328)

Subjects with available clinical information (n = 13,226)

Excluded subjects without available clinical information to assess vascular risk factors (n = 1102)

Subjects without aneurysmal lesion or saccular IA (n = 12,785)

Excluded subjects with dissecting or mycotic aneurysms or with aneurysm-like lesion indistinguishable from infundibulum, fenestration, or atherosclerotic remodeling (n = 441)
Table 1. Logistic regression analyses of the relationship between BMD and IA size larger than 3 mm in at-risk population (tertile 3 vs tertile 1-2)

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted</th>
<th>Adjusted for Age and Sex</th>
<th>Adjusted for All Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P Value</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Total population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbar spine</td>
<td>2.27 (1.53–3.36)</td>
<td><.001</td>
<td>2.28 (1.54–3.38)</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>1.51 (1.02–2.23)</td>
<td>.04</td>
<td>1.51 (1.02–2.24)</td>
</tr>
<tr>
<td>Total hip</td>
<td>1.24 (0.84–1.83)</td>
<td>.29</td>
<td>1.24 (0.83–1.83)</td>
</tr>
<tr>
<td>At-risk population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbar spine</td>
<td>2.62 (1.71–4.02)</td>
<td><.001</td>
<td>2.66 (1.74–4.10)</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>1.68 (1.10–2.56)</td>
<td>.02</td>
<td>1.69 (1.11–2.58)</td>
</tr>
<tr>
<td>Total hip</td>
<td>1.53 (1.00–2.33)</td>
<td>.048</td>
<td>1.54 (1.01–2.35)</td>
</tr>
</tbody>
</table>

Abbreviations: BMD, bone mineral density; IA, intracranial aneurysm; OR, odds ratio; CI, confidence interval.
Table 2. Logistic regression analyses of the relationship between BMD and multiplicity of IA (tertile 3 vs tertile 1-2)

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted OR (95% CI)</th>
<th>P Value</th>
<th>Adjusted for Age and Sex OR (95% CI)</th>
<th>P Value</th>
<th>Adjusted for All Covariates OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbar spine</td>
<td>1.54 (0.91–2.59)</td>
<td>.11</td>
<td>1.53 (0.90–2.58)</td>
<td>.11</td>
<td>1.50 (0.88–2.55)</td>
<td>.13</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>1.43 (0.84–2.41)</td>
<td>.18</td>
<td>1.43 (0.84–2.41)</td>
<td>.18</td>
<td>1.38 (0.81–2.35)</td>
<td>.23</td>
</tr>
<tr>
<td>Total hip</td>
<td>1.43 (0.84–2.41)</td>
<td>.18</td>
<td>1.43 (0.84–2.41)</td>
<td>.18</td>
<td>1.42 (0.83–2.40)</td>
<td>.20</td>
</tr>
<tr>
<td>At-risk population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbar spine</td>
<td>1.57 (0.90–2.73)</td>
<td>.11</td>
<td>1.57 (0.90–2.73)</td>
<td>.11</td>
<td>1.57 (0.88–2.76)</td>
<td>.12</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>1.45 (0.83–2.53)</td>
<td>.19</td>
<td>1.45 (0.83–2.52)</td>
<td>.19</td>
<td>1.42 (0.80–2.48)</td>
<td>.23</td>
</tr>
<tr>
<td>Total hip</td>
<td>1.34 (0.76–2.33)</td>
<td>.30</td>
<td>1.34 (0.76–2.33)</td>
<td>.31</td>
<td>1.34 (0.76–2.36)</td>
<td>.31</td>
</tr>
</tbody>
</table>

Abbreviations: BMD, bone mineral density; IA, intracranial aneurysm; OR, odds ratio; CI, confidence interval.
eTable 3. Linear regression analyses of the relationship between low T-score and log size of IA in at-risk population

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted</th>
<th>Adjusted for Age and Sex</th>
<th>Adjusted for All Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β (SE)</td>
<td>P value</td>
<td>β (SE)</td>
</tr>
<tr>
<td>Total</td>
<td>0.171 (0.050)</td>
<td>.001</td>
<td>0.146 (0.051)</td>
</tr>
<tr>
<td>Women</td>
<td>0.150 (0.063)</td>
<td>.02</td>
<td>0.140 (0.065)</td>
</tr>
<tr>
<td>Men</td>
<td>0.145 (0.085)</td>
<td>.09</td>
<td>0.146 (0.086)</td>
</tr>
</tbody>
</table>

Abbreviations: BMD, bone mineral density; IA, intracranial aneurysm; β, non-standardized regression coefficient; SE, standard error.