Supplementary Online Content

eMethods. Analyte Measurements

eTable 1. Baseline Characteristics between those with and without follow-up visits

eTable 2. Baseline and post-operative characteristics of study cohort by five-year chronic kidney disease (CKD) status

eTable 3. Baseline and post-operative characteristics of study cohort by severe AKI status

eTable 4. Five-year outcomes by severe acute kidney injury (AKI) status

eTable 5. Pediatric studies of hypertension prevalence

eTable 6. Peri-operative biomarker results and 5-year hypertension

eTable 7. Peri-operative biomarker results and 5-year CKD

eTable 8. Association of kidney injury and 5 year renal outcomes

This supplementary material has been provided by the authors to give readers additional information about their work.

On-line Only Supplemental Material

eMethods: Analyte Measurements

eTable 1: Baseline Characteristics between those with and without follow-up visits

eTable 2: Baseline and post-operative characteristics of study cohort by five-year chronic kidney disease (CKD) status

eTable 3: Baseline and post-operative characteristics of study cohort by severe AKI status

eTable 4. Five-year outcomes by severe acute kidney injury (AKI) status

eTable 5: Pediatric studies of hypertension prevalence

eTable 6: Peri-operative biomarker results and 5-year hypertension

eTable 7: Peri-operative biomarker results and 5-year CKD

eTable 8: Association of kidney injury and 5 year renal outcomes
eMethods

Analyte Measurements: Blood and urine were centrifuged and stored at each site as 0.2ml (plasma) and 1.0ml (urine) aliquots in a -80°C freezer, within six hours from collection. Cincinnati Children’s Hospital and Montreal Children’s Hospital made monthly shipments of biospecimens on dry ice to Yale University. All shipped biospecimens were stored at Yale University in a -80°C freezer until laboratory measurements were performed. Serum creatinine and urine creatinine were measured by IDMS-traceable assay and urine albumin was measured by immunoturbidimetry at the Yale-New Haven Hospital Clinical Laboratory. Serum cystatin C was measured by turbidimetric assay using a Roche COBAS 6000 chemistry analyzer at the University of Minnesota. Samples were analyzed according to the manufacturer’s specifications and individuals performing measurements were blind to clinical outcomes. Serum creatinine and cystatin C measurements were repeated in 30% of baseline specimens to exclude assay drift. Urine dipstick was also performed on the same day of the visit using a Clinitek Status urinanalyzer (Siemens, Munich, Germany). Urine biomarkers were measured as previously described. Briefly, urine neutrophil gelatinase–associated lipocalin (NGAL) and interleukin 18 (IL-18) were measured using an assay (ARCHITECT; Abbott Diagnostics) with coefficients of variation of 5% and 8%, respectively. Kidney injury molecule 1 (KIM-1) and liver fatty acid–binding protein (L-FABP) were measured in multiplex format (Multi-Assay; MesoScale Discovery). The intraassay coefficient of variation is 10% or less for both KIM-1 and L-FABP assays.
eTable 1: Baseline Characteristics between those with and without follow-up visits

<table>
<thead>
<tr>
<th></th>
<th>Follow-up completed (n=131)</th>
<th>Follow-up not completed (n=180)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (months) (median [IQR])</td>
<td>31.9 [6.0, 58.6]</td>
<td>13.2 [4.7, 67.4]</td>
<td>0.52</td>
</tr>
<tr>
<td>sex M</td>
<td>68 (52%)</td>
<td>103 (57%)</td>
<td>0.35</td>
</tr>
<tr>
<td>RACHS-1 Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7 (5%)</td>
<td>11 (6%)</td>
<td>0.98</td>
</tr>
<tr>
<td>2</td>
<td>66 (51%)</td>
<td>87 (49%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>52 (40%)</td>
<td>74 (41%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5 (4%)</td>
<td>7 (4%)</td>
<td></td>
</tr>
<tr>
<td>CPB Time</td>
<td>92 [65, 125]</td>
<td>101 [66, 139]</td>
<td>0.28</td>
</tr>
<tr>
<td>Cross Clamp Time</td>
<td>38 [0, 64]</td>
<td>42 [0, 72]</td>
<td>0.38</td>
</tr>
<tr>
<td>AKIN AKI Stages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No AKI</td>
<td>74 (56%)</td>
<td>106 (59%)</td>
<td>0.44</td>
</tr>
<tr>
<td>Stage 1</td>
<td>46 (35%)</td>
<td>53 (29%)</td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td>7 (5%)</td>
<td>17 (9%)</td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td>4 (3%)</td>
<td>4 (2%)</td>
<td></td>
</tr>
<tr>
<td>Dialysis</td>
<td>3 (2%)</td>
<td>2 (1%)</td>
<td>0.41</td>
</tr>
<tr>
<td>In hospital Death</td>
<td>0 (0%)</td>
<td>6 (3%)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; RACHS, risk adjustment for congenital heart surgery; CPB, cardiopulmonary bypass; AKIN, Acute Kidney Injury Network; AKI, Acute Kidney Injury; N/A, not available. Results reported as n(%) or median (25th percentile, 75th percentile). Results reported as n(%) or median (25th percentile, 75th percentile).
eTable 2: Baseline and post-operative characteristics of study cohort by 5-year chronic kidney disease (CKD) status

<table>
<thead>
<tr>
<th></th>
<th>Overall (n=116)</th>
<th>CKD (n=21)</th>
<th>No CKD (n=95)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative/baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (months), (median (IQR))</td>
<td>6.1 (36.1, 58.9)</td>
<td>37.4 (6, 68.9)</td>
<td>35.76 (6.1, 58.6)</td>
<td>0.75</td>
</tr>
<tr>
<td>Male gender</td>
<td>62 (53%)</td>
<td>12 (57%)</td>
<td>50 (53%)</td>
<td>0.71</td>
</tr>
<tr>
<td>Non-white</td>
<td>15 (13%)</td>
<td>4 (19%)</td>
<td>11 (12%)</td>
<td>0.36</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>22 (19%)</td>
<td>5 (24%)</td>
<td>17 (18%)</td>
<td>0.53</td>
</tr>
<tr>
<td>Loop diuretics</td>
<td>28 (24%)</td>
<td>5 (24%)</td>
<td>23 (24%)</td>
<td>0.97</td>
</tr>
<tr>
<td>Potassium sparing diuretics</td>
<td>10 (9%)</td>
<td>1 (5%)</td>
<td>9 (9%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Aspirin</td>
<td>14 (12%)</td>
<td>5 (24%)</td>
<td>9 (9%)</td>
<td>0.07</td>
</tr>
<tr>
<td>Pre-operative estimated SCr-GFR (median (IQR))</td>
<td>79.2 (92.9, 112.5)</td>
<td>82.6 (72.3, 88.5)</td>
<td>95.5 (82.6, 115.2)</td>
<td>0.02</td>
</tr>
<tr>
<td>Pre-operative CKD‡</td>
<td>43 (37%)</td>
<td>13 (62%)</td>
<td>30 (32%)</td>
<td>0.01</td>
</tr>
<tr>
<td>RACHS-1 surgical category 1</td>
<td>7 (6%)</td>
<td>2 (10%)</td>
<td>5 (5%)</td>
<td>0.89</td>
</tr>
<tr>
<td>RACHS-1 surgical category 2</td>
<td>54 (47%)</td>
<td>10 (48%)</td>
<td>44 (47%)</td>
<td>0.89</td>
</tr>
<tr>
<td>RACHS-1 surgical category 3</td>
<td>49 (43%)</td>
<td>8 (38%)</td>
<td>41 (44%)</td>
<td>0.89</td>
</tr>
<tr>
<td>RACHS-1 surgical category 4</td>
<td>5 (4%)</td>
<td>1 (5%)</td>
<td>4 (4%)</td>
<td>0.89</td>
</tr>
<tr>
<td>Type of Surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septal Defect Repair</td>
<td>39 (36%)</td>
<td>9 (45%)</td>
<td>30 (34%)</td>
<td></td>
</tr>
<tr>
<td>Inflow/Outflow tract or valve procedure</td>
<td>33 (30%)</td>
<td>4 (20%)</td>
<td>18 (20%)</td>
<td>0.60</td>
</tr>
<tr>
<td>Combined Procedure</td>
<td>48 (44%)</td>
<td>7 (35%)</td>
<td>41 (46%)</td>
<td></td>
</tr>
<tr>
<td>Hospital outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak post-op SCr rise from baseline (median (IQR))</td>
<td>0.18 (0.33, 0.67)</td>
<td>0.25 (0, 0.33)</td>
<td>0.5 (0.2, 0.67)</td>
<td>0.02</td>
</tr>
<tr>
<td>Renal replacement</td>
<td>3 (3%)</td>
<td>0</td>
<td>3 (3%)</td>
<td>0.41</td>
</tr>
<tr>
<td>ICU length of stay (median (IQR))</td>
<td>1 (2, 4)</td>
<td>3 (1, 4)</td>
<td>2 (1, 3)</td>
<td>0.30</td>
</tr>
<tr>
<td>Hospital length of stay (median (IQR))</td>
<td>4 (5, 7.5)</td>
<td>6 (4, 10)</td>
<td>5 (4, 7)</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range, SCr, serum creatinine (in mg/dl. 1mg/dl = 88.4 µmole/L), GFR, glomerular filtration rate (ml/min/1.73m²). ‡Pre-op CKD defined as eGFR < age-based thresholds or microalbuminuria < age-based thresholds: defined as age-based GFR thresholds: <90 ml/min/1.73m² for ≥2 years; <76 for 1.5-2 years; <74 for 1-1.5 years; <65 for <1 year; <58 for 3months-8 months. Pre-op microalbuminuria defined by age-based albumin to creatinine ratio thresholds: >30mg/g for ≥2 years; >75 for 6months-2 years. RACHS-1, risk adjustment for congenital heart surgery.
eTable 3: Baseline and post-operative characteristics of study cohort by severe AKI status

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Overall (n=131)</th>
<th>Severe AKI (n=21)</th>
<th>No Severe AKI (n=110)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative/baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (months), (median (IQR))</td>
<td>6 (31.92, 58.56)</td>
<td>11.4 (6.36, 46.44)</td>
<td>35.58 (6, 59.16)</td>
<td>0.37</td>
</tr>
<tr>
<td>Male gender</td>
<td>68 (52%)</td>
<td>12 (57%)</td>
<td>56 (51%)</td>
<td>0.60</td>
</tr>
<tr>
<td>Non-white</td>
<td>20 (15%)</td>
<td>3 (14%)</td>
<td>17 (15%)</td>
<td>0.89</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>26 (20%)</td>
<td>5 (24%)</td>
<td>21 (19%)</td>
<td>0.62</td>
</tr>
<tr>
<td>Loop diuretic</td>
<td>34 (26%)</td>
<td>8 (38%)</td>
<td>26 (24%)</td>
<td>0.17</td>
</tr>
<tr>
<td>Potassium Sparing diuretic</td>
<td>14 (11%)</td>
<td>4 (19%)</td>
<td>10 (9%)</td>
<td>0.18</td>
</tr>
<tr>
<td>ASA</td>
<td>15 (11%)</td>
<td>2 (10%)</td>
<td>13 (12%)</td>
<td>0.76</td>
</tr>
<tr>
<td>Pre-operative estimated SCr-GFR (median (IQR))</td>
<td>78.47 (92.72, 110.13)</td>
<td>97.06 (87.42, 125.97)</td>
<td>90.86 (78.47, 107.38)</td>
<td>0.08</td>
</tr>
<tr>
<td>Pre-operative SCr-GFR percentile (mean +/- std dev)</td>
<td>59.27 (33.24)</td>
<td>73.29 (30.12)</td>
<td>56.6 (33.26)</td>
<td>0.03</td>
</tr>
<tr>
<td>RACHS-1 surgical category 1</td>
<td>7 (5%)</td>
<td>0</td>
<td>7 (6%)</td>
<td>0.03</td>
</tr>
<tr>
<td>RACHS-1 surgical category 2</td>
<td>66 (51%)</td>
<td>9 (43%)</td>
<td>57 (52%)</td>
<td>0</td>
</tr>
<tr>
<td>RACHS-1 surgical category 3</td>
<td>52 (40%)</td>
<td>9 (43%)</td>
<td>43 (39%)</td>
<td>0</td>
</tr>
<tr>
<td>RACHS-1 surgical category 4</td>
<td>5 (4%)</td>
<td>3 (14%)</td>
<td>2 (2%)</td>
<td>0</td>
</tr>
<tr>
<td>Hospital renal outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak post-op SCr rise from baseline (median (Q1,Q3))</td>
<td>0.2 (0.33, 0.67)</td>
<td>1.25 (1, 1.5)</td>
<td>0.33 (0, 0.5)</td>
<td><.01</td>
</tr>
<tr>
<td>CRRT</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>0.07</td>
</tr>
<tr>
<td>Peritoneal dialysis</td>
<td>2 (67%)</td>
<td>2 (67%)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: AKI, Acute Kidney Injury; IQR, interquartile range; SCr, serum creatinine (in mg/dl. 1mg/dl = 88.4 μmole/L); GFR, glomerular filtration rate (ml/min/1.73m²); RACHS-1, risk adjustment for congenital heart surgery; CRRT, continuous renal replacement therapy

© 2016 American Medical Association. All rights reserved.
eTable 4. Five-year outcomes by severe acute kidney injury (AKI) status

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Overall (n=131)</th>
<th>Severe AKI (n=21)</th>
<th>Non-AKI (n=110)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height z-score (median [IQR])</td>
<td>-0.56 [-1.6, 0.5]</td>
<td>-0.8 [-1.53, 0.29]</td>
<td>-0.51 [-1.61, 0.56]</td>
<td>0.58</td>
</tr>
<tr>
<td>Weight z-score</td>
<td>-0.14 [-1.01, 0.61]</td>
<td>-0.76 [-1.68, 0.47]</td>
<td>-0.1 [-0.82, 0.65]</td>
<td>0.08</td>
</tr>
<tr>
<td>BMI z-score</td>
<td>0.36 [-0.45, 1.05]</td>
<td>-0.26 [-1.24, 0.52]</td>
<td>0.39 [-0.25, 1.07]</td>
<td>0.05</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic BP z-score</td>
<td>0.41 [-0.21, 1.03]</td>
<td>0.56 [0.12, 1.02]</td>
<td>0.33 [-0.22, 1.09]</td>
<td>0.64</td>
</tr>
<tr>
<td>Diastolic BP z-score</td>
<td>-0.01 [-0.27, 0.35]</td>
<td>0.02 [-0.16, 0.31]</td>
<td>-0.02 [-0.31, 0.36]</td>
<td>0.79</td>
</tr>
<tr>
<td>Systolic Pre-HTN</td>
<td>12 (9%)</td>
<td>1 (5%)</td>
<td>11 (10%)</td>
<td>0.43</td>
</tr>
<tr>
<td>Systolic HTN</td>
<td>14 (11%)</td>
<td>1 (5%)</td>
<td>13 (12%)</td>
<td>0.43</td>
</tr>
<tr>
<td>Diastolic Pre-HTN</td>
<td>8 (6%)</td>
<td>0</td>
<td>8 (7%)</td>
<td>0.30</td>
</tr>
<tr>
<td>Diastolic HTN</td>
<td>4 (3%)</td>
<td>0</td>
<td>4 (4%)</td>
<td>0.30</td>
</tr>
<tr>
<td>Pre-HTN</td>
<td>6 (5%)</td>
<td>1 (5%)</td>
<td>5 (5%)</td>
<td>0.11</td>
</tr>
<tr>
<td>HTN (BP or self-report)</td>
<td>22 (17%)</td>
<td>1 (5%)</td>
<td>21 (19%)</td>
<td>0.11</td>
</tr>
<tr>
<td>Proteinuria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>109 (90%)</td>
<td>20 (100%)</td>
<td>89 (88%)</td>
<td>0.27</td>
</tr>
<tr>
<td>Trace</td>
<td>5 (4%)</td>
<td>0</td>
<td>5 (5%)</td>
<td>0.27</td>
</tr>
<tr>
<td>Small</td>
<td>7 (6%)</td>
<td>0</td>
<td>7 (7%)</td>
<td>0.27</td>
</tr>
<tr>
<td>Large</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.27</td>
</tr>
<tr>
<td>Albumin to creatinine ratio (mg/g), (median [IQR])</td>
<td>5.1 [2.39, 12.13]</td>
<td>4.74 [2.3, 9.21]</td>
<td>5.45 [2.76, 12.83]</td>
<td>0.49</td>
</tr>
<tr>
<td>Microalbuminuria (Alb Cre > 30 mg/g)</td>
<td>9 (8%)</td>
<td>1 (6%)</td>
<td>8 (8%)</td>
<td>0.70</td>
</tr>
<tr>
<td>Renal function (GFR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCr-eGFR (median [IQR])</td>
<td>101.22 [111.66, 125.53]</td>
<td>125.28 [105.05, 134.06]</td>
<td>110.89 [99.02, 123.53]</td>
<td>0.10</td>
</tr>
<tr>
<td>SCr-eGFR abnormal for age (<90)</td>
<td>13 (13%)</td>
<td>0</td>
<td>13 (15%)</td>
<td>0.14</td>
</tr>
<tr>
<td>SCr-eGFR < 60</td>
<td>1 (1%)</td>
<td>0</td>
<td>1 (1%)</td>
<td>0.70</td>
</tr>
<tr>
<td>CKD (SCr-eGFR <90 or microalbuminuria)</td>
<td>21 (18%)</td>
<td>1 (6%)</td>
<td>20 (20%)</td>
<td>0.13</td>
</tr>
<tr>
<td>Nephrologist F/U</td>
<td>5 (4%)</td>
<td>1 (5%)</td>
<td>4 (4%)</td>
<td>0.81</td>
</tr>
<tr>
<td>Family history of renal disease</td>
<td>61 (47%)</td>
<td>10 (48%)</td>
<td>51 (46%)</td>
<td>0.91</td>
</tr>
<tr>
<td>At least 1 hospital/ER readmission</td>
<td>32 (24%)</td>
<td>7 (33%)</td>
<td>25 (23%)</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range, BMI, body mass index, HTN, hypertension, GFR, glomerular filtration rate (ml/min/1.73m²), SCr, serum creatinine (in mg/dl. 1mg/dl = 88.4 µmole/L), CKD, chronic kidney disease, AKI, Acute Kidney Injury F/U, follow-up, ER, emergency room, N/A, not available
eTable 5: Pediatric studies of hypertension prevalence

<table>
<thead>
<tr>
<th>Author, Year published</th>
<th>Population</th>
<th>BP definition</th>
<th>Ascertainment of BP</th>
<th>Years</th>
<th>Age range (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen et al., 2007</td>
<td>Northeast Ohio, USA</td>
<td>Sys or Dias ≥95% X 3 visits</td>
<td>Automatic BP cuff and confirmed with manual BP</td>
<td>1999-2006</td>
<td>3-18</td>
</tr>
<tr>
<td>Lo et al., 2013</td>
<td>Kaiser (California, Colorado, Minnesota), USA</td>
<td>Sys or Dias ≥95% X 3 visits</td>
<td>Automatic or manual BP cuff</td>
<td>2007-2009</td>
<td>3-17</td>
</tr>
<tr>
<td>Xi et al., 2016</td>
<td>National Health and Nutrition Examination Survey</td>
<td>Sys or Dias ≥95% X 3 visits</td>
<td>Automatic or manual BP cuff</td>
<td>2009-2012</td>
<td>8-17</td>
</tr>
</tbody>
</table>

Abbreviations: BP, blood pressure, %, percentile, Sys, systolic, Dias, Diastolic, N/A, not available
eTable 6: Peri-operative biomarker results and 5-year hypertension

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Overall</th>
<th>Hypertension</th>
<th>No Hypertension</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine albumin Pre-op</td>
<td>27.64 (45.1) [4.1, 9.4, 29.8] N=117</td>
<td>17.32 (29.57) [2.8, 6.2, 17.8] N=19</td>
<td>29.64 (47.38) [4.2, 11.2, 35] N=98</td>
<td>0.1</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>71.68 (107.7) [11.7, 30.9, 93.6] N=129</td>
<td>49.11 (63.17) [12, 16.8, 81.4] N=21</td>
<td>76.07 (114.06) [11.3, 32.05, 96.85] N=108</td>
<td>0.4</td>
</tr>
<tr>
<td>Urine Albumin to Creatinine Ratio Pre-op</td>
<td>80.24 (210.2) [10.95, 23.64, 75.45] N=117</td>
<td>131.59 (476.51) [10.01, 22.43, 33.46] N=19</td>
<td>70.29 (100.43) [10.96, 26.62, 88.49] N=98</td>
<td>0.1</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>424.78 (740.9) [64.28, 126.7, 483.7] N=129</td>
<td>23.95 (22.12) [7.18, 16.4, 48.77] N=21</td>
<td>476.62 (786.57) [63.18, 136.92, 491.27] N=108</td>
<td>0.5</td>
</tr>
<tr>
<td>Urine IL-18 Pre-op</td>
<td>83.95 (310.26) [8.04, 18.84, 48.15] N=125</td>
<td>1.83 (4.67) [0.24, 0.51, 1.24] N=125</td>
<td>1.79 (5.6) [0.24, 0.51, 1.24] N=125</td>
<td>0.8</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>291.81 (1081.08) [14.78, 43.98, 182.72] N=131</td>
<td>118.52 (218.24) [10.45, 58.53, 122.84] N=22</td>
<td>326.79 (1179.07) [15.49, 43.42, 200.22] N=109</td>
<td>0.6</td>
</tr>
<tr>
<td>Urine IL-18 Creatinine Corrected Pre-op</td>
<td>1.83 (4.67) [0.24, 0.51, 1.24] N=125</td>
<td>0.79 (0.64) [0.22, 0.8, 1.22] N=20</td>
<td>2.03 (5.06) [0.24, 0.5, 1.24] N=105</td>
<td>0.8</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>17.37 (54.22) [2.99, 8.4, 34.38] N=131</td>
<td>5.57 (9.88) [3.18, 4.88] N=22</td>
<td>19.75 (59.04) [1.91, 1.9, 8.06] N=109</td>
<td>0.8</td>
</tr>
<tr>
<td>Urine NGAL Pre-op</td>
<td>12.14 (37.01) [1.94, 4.15, 7.74] N=125</td>
<td>1.83 (4.67) [0.24, 0.51, 1.24] N=125</td>
<td>1.79 (5.6) [0.24, 0.51, 1.24] N=125</td>
<td>0.8</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>115.33 (414.81) [2.99, 8.4, 34.38] N=131</td>
<td>23.57 (31.57) [2.99, 6.91, 44.71] N=22</td>
<td>133.85 (452.62) [3.02, 9.44, 33.67] N=109</td>
<td>0.6</td>
</tr>
<tr>
<td>Urine NGAL Creatinine Corrected Pre-op</td>
<td>12.14 (37.01) [1.94, 4.15, 7.74] N=125</td>
<td>0.54 (3.21) [0.04, 0.08, 0.25] N=125</td>
<td>0.47 (1.48) [0.05, 0.11, 0.21] N=20</td>
<td>0.8</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>6.21 (20.31) [0.14, 0.47, 1.71] N=131</td>
<td>1.27 (1.92) [0.24, 0.38, 1.92] N=22</td>
<td>7.21 (22.14) [0.14, 0.49, 1.64] N=109</td>
<td>0.7</td>
</tr>
<tr>
<td>Plasma NGAL Pre-op</td>
<td>66.43 (51.82) [60, 61.28, 97.82] N=123</td>
<td>88.41 (31.58) [60, 78.38, 105.18] N=21</td>
<td>86.09 (55.18) [60, 60, 94.34] N=102</td>
<td>0.2</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>162.48 (111.47) [83.15, 130.32, 183.64] N=121</td>
<td>167.97 (116.68) [86.74, 125.43, 181.05] N=21</td>
<td>161.33 (110.92) [82.92, 130.51, 185.04] N=100</td>
<td>0.9</td>
</tr>
<tr>
<td>Urine KIM-1 Pre-op</td>
<td>0.82 (0.99) [0.22, 0.55, 0.98] N=124</td>
<td>0.51 (0.44) [0.07, 0.42, 0.78] N=20</td>
<td>0.88 (1.05) [0.23, 0.56, 1.05] N=104</td>
<td>0.1</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>0.59 (0.61) [0.19, 0.4, 0.8] N=130</td>
<td>0.48 (0.43) [0.18, 0.35, 0.66] N=21</td>
<td>0.61 (0.64) [0.2, 0.4, 0.82] N=109</td>
<td>0.3</td>
</tr>
<tr>
<td>Urine KIM-1 Creatinine Corrected Pre-op</td>
<td>0.82 (0.99) [0.22, 0.55, 0.98] N=124</td>
<td>0.02 (0.02) [0.01, 0.01, 0.02] N=20</td>
<td>0.02 (0.02) [0.01, 0.01, 0.02] N=104</td>
<td>0.5</td>
</tr>
<tr>
<td>Biomarker</td>
<td>Overall</td>
<td>Hypertension</td>
<td>No Hypertension</td>
<td>P- value</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine L-FABP</td>
<td>0.03 (0.03) [0.01, 0.02, 0.03] N=130</td>
<td>0.03 (0.02) [0.01, 0.02, 0.03] N=21</td>
<td>0.03 (0.04) [0.01, 0.02, 0.04] N=109</td>
<td>0.6 5</td>
</tr>
<tr>
<td>Urine L-FABP Creatinine Corrected</td>
<td>8.45 (22.05) [1.36, 3.24, 6.77] N=124</td>
<td>3.71 (4.14) [1.13, 2.33, 5.68] N=20</td>
<td>9.36 (23.92) [1.41, 3.37, 7.3] N=104</td>
<td>0.2 4</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine L-FABP</td>
<td>227.95 (372.21) [13.46, 58.62, 259.51] N=130</td>
<td>149.06 (279.68) [8.53, 23.47, 144.53] N=21</td>
<td>243.15 (386.72) [19.17, 65.96, 267.2] N=109</td>
<td>0.2 1</td>
</tr>
<tr>
<td>Urine L-FABP Creatinine Corrected</td>
<td>0.28 (0.9) [0.04, 0.08, 0.19] N=124</td>
<td>0.17 (0.28) [0.04, 0.06, 0.15] N=20</td>
<td>0.3 (0.98) [0.04, 0.09, 0.19] N=104</td>
<td>0.6 9</td>
</tr>
</tbody>
</table>

Results are presented mean (SD) [p25, median, 75] N
eTable 7: Peri-operative biomarker results and 5-year CKD

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Overall</th>
<th>CKD</th>
<th>No CKD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine albumin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-op</td>
<td>26.15 (45.65) [4.1, 8.4, 24.5] N=105</td>
<td>38.97 (64.64) [3.1, 11.7, 50.5] N=19</td>
<td>23.31 (40.25) [4.2, 8.3, 20.3] N=86</td>
<td>0.1</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>66.53 (102.75) [10.9, 28.65, 93.2] N=114</td>
<td>53.79 (63.38) [8.9, 43, 68.4] N=21</td>
<td>69.41 (109.77) [11.7, 25.8, 93.6] N=93</td>
<td>0.4</td>
</tr>
<tr>
<td>Urine Albumin to Creatinine Ratio</td>
<td>75.01 (215.99) [10.96, 22.89, 63.79] N=105</td>
<td>96.28 (148.71) [14.6, 27.17, 127.26] N=21</td>
<td>70.32 (228.7) [10.95, 25.1, 63.12] N=86</td>
<td>0.1</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>373.67 (573.9) [10.9, 28.65, 93.2] N=114</td>
<td>220.68 (220.28) [68.03, 103.5, 374.77] N=21</td>
<td>408.22 (622.45) [59.73, 126.7, 483.7] N=93</td>
<td>0.5</td>
</tr>
<tr>
<td>Urine IL-18</td>
<td>84.24 (325.19) [7.75, 18.58, 46.02] N=112</td>
<td>85.88 (294.71) [7.86, 15.12, 35.47] N=20</td>
<td>83.88 (332.95) [7.57, 19.18, 47.81] N=92</td>
<td>0.3</td>
</tr>
<tr>
<td>Pre-op</td>
<td>1.74 (4.74) [0.2, 0.49, 1.06] N=112</td>
<td>2.18 (7.24) [0.13, 0.48, 1.08] N=20</td>
<td>1.64 (4.05) [0.25, 0.49, 1.06] N=92</td>
<td>0.8</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>304.46 (1144.93) [13.01, 43.17, 164.58] N=116</td>
<td>277.55 (637.23) [10.39, 55.95, 182.72] N=21</td>
<td>310.41 (1231.72) [13.3, 40.43, 161.55] N=95</td>
<td>0.6</td>
</tr>
<tr>
<td>Urine IL-18 Corrected</td>
<td>10.33 (31.98) [60, 62.44, 97.82] N=112</td>
<td>12.62 (294.71) [2.37, 4.92, 8.08] N=20</td>
<td>9.83 (33.65) [1.65, 3.78, 6.97] N=92</td>
<td>0.2</td>
</tr>
<tr>
<td>Pre-op</td>
<td>10.33 (31.98) [1.84, 3.86, 7.11] N=112</td>
<td>17.57 (50.64) [0.71, 1.4, 9.4] N=21</td>
<td>17.09 (57.54) [0.95, 1.81, 7.99] N=95</td>
<td>0.8</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>115.44 (432.73) [2.95, 8.61, 34.03] N=116</td>
<td>167.07 (674.72) [3.96, 7.08, 21.25] N=21</td>
<td>104.03 (362.63) [2.58, 9.44, 43.09] N=95</td>
<td>0.6</td>
</tr>
<tr>
<td>Urine NGAL</td>
<td>86.4 (52.14) [60, 62.44, 97.82] N=110</td>
<td>12.62 (23.31) [2.37, 4.92, 8.08] N=20</td>
<td>88.81 (56.54) [60, 64.92, 100.95] N=90</td>
<td>0.2</td>
</tr>
<tr>
<td>Pre-op</td>
<td>0.26 (0.71) [0.04, 0.08, 0.23] N=112</td>
<td>0.22 (0.34) [0.05, 0.16, 0.25] N=20</td>
<td>0.26 (0.77) [0.04, 0.07, 0.22] N=92</td>
<td>0.8</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>86.4 (52.14) [60, 62.44, 97.82] N=110</td>
<td>75.51 (21.65) [60, 60, 94.59] N=20</td>
<td>88.81 (56.54) [60, 64.92, 100.95] N=90</td>
<td>0.2</td>
</tr>
<tr>
<td>Plasma NGAL</td>
<td>166.15 (112.73) [86.74, 130.69, 186.44] N=107</td>
<td>201.2 (152.1) [83.34, 147.52, 283.57] N=19</td>
<td>158.59 (101.84) [86.92, 130.51, 180.33] N=88</td>
<td>0.9</td>
</tr>
<tr>
<td>Pre-op</td>
<td>0.81 (1.02) [0.17, 0.51, 0.86] N=111</td>
<td>0.8 (1.09) [0.16, 0.48, 0.7] N=19</td>
<td>0.81 (1.02) [0.2, 0.53, 0.89] N=92</td>
<td>0.7</td>
</tr>
<tr>
<td>Day 1 0-6 Hours</td>
<td>0.56 (0.58) [0.19, 0.38, 0.79] N=115</td>
<td>0.69 (0.51) [0.27, 0.71, 0.92] N=21</td>
<td>0.54 (0.59) [0.18, 0.36, 0.72] N=94</td>
<td>0.3</td>
</tr>
<tr>
<td>Urinary KIM-1</td>
<td>0.02 (0.01) [0.01, 0.01, 0.02] N=111</td>
<td>0.01 (0.01) [0.01, 0.01, 0.02] N=19</td>
<td>0.02 (0.01) [0.01, 0.01, 0.02] N=92</td>
<td>0.5</td>
</tr>
<tr>
<td>Pre-op</td>
<td>0.02 (0.01) [0.01, 0.01, 0.02] N=111</td>
<td>0.01 (0.01) [0.01, 0.01, 0.02] N=19</td>
<td>0.02 (0.01) [0.01, 0.01, 0.02] N=92</td>
<td>0.2</td>
</tr>
<tr>
<td>Biomarker</td>
<td>Day 1 0-6 Hours</td>
<td>Overall</td>
<td>CKD</td>
<td>No CKD</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.03 (0.02) [0.01, 0.02, 0.03] N=115</td>
<td>0.03 (0.03) [0.01, 0.02, 0.04] N=21</td>
</tr>
<tr>
<td>Urine L-FABP</td>
<td></td>
<td></td>
<td>7.56 (20.73) [1.34, 2.65, 6.48] N=111</td>
<td>4.87 (5.22) [1.12, 3.27, 8.86] N=19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>219.58 (358.96) [8.63, 261.06] N=115</td>
<td>258.84 (373.62) [21.22, 342.72] N=21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.23 (0.86) [0.04, 0.08, 0.18] N=111</td>
<td>0.11 (0.09) [0.04, 0.08, 0.15] N=19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.01 (35.72) [0.68, 2.92, 13.58] N=115</td>
<td>14.34 (21.45) [0.8, 4.43, 20.1] N=21</td>
</tr>
</tbody>
</table>

Results are presented mean (SD) [p25, median, 75] N
Table 8: Association of kidney injury and 5-year renal outcomes

<table>
<thead>
<tr>
<th>AKI definition</th>
<th>Outcome</th>
<th>Overall</th>
<th>No Injury† (no elevated biomarker)</th>
<th>Kidney Injury (elevated biomarker)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Overall</td>
<td>Microalbuminuria No</td>
<td>Microalbuminuria Yes</td>
<td></td>
</tr>
<tr>
<td>Urine IL-18</td>
<td></td>
<td>Overall</td>
<td>107 (92%)</td>
<td>9 (8%)</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple</td>
<td>91 (92%)</td>
<td>8 (8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria No</td>
<td>16 (94%)</td>
<td>1 (6%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>109.73 (30.43)</td>
<td>N=13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>114.33 (24.11)</td>
<td>[100.72, 115.12, 125.95] N=88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microalbuminuria Yes</td>
<td>116.65 (30.16)</td>
<td>[101.93, 112.48, 142.78] N=14</td>
<td></td>
</tr>
<tr>
<td>AKI definition</td>
<td>Outcome</td>
<td>Overall</td>
<td>No Injury† (no elevated biomarker)</td>
<td>Kidney Injury (elevated biomarker)</td>
<td>P-value</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111.66, 125.53</td>
<td>[100.22, 111.58, 125.53] N=90</td>
<td>113.31, 125.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CKD No</td>
<td>94 (82%)</td>
<td>84 (82%)</td>
<td>10 (77%)</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>CKD Yes</td>
<td>21 (18%)</td>
<td>18 (18%)</td>
<td>3 (23%)</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Hypertension No</td>
<td>109 (84%)</td>
<td>96 (83%)</td>
<td>13 (87%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypertension Yes</td>
<td>21 (16%)</td>
<td>19 (17%)</td>
<td>2 (13%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microalbuminuria No</td>
<td>106 (92%)</td>
<td>72 (94%)</td>
<td>34 (89%)</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Microalbuminuria Yes</td>
<td>9 (8%)</td>
<td>5 (6%)</td>
<td>4 (11%)</td>
<td></td>
</tr>
<tr>
<td>Urine L-FABP</td>
<td>eGFR</td>
<td>113.74 (24.88)</td>
<td>[101.22, 111.66, 125.53] N=101</td>
<td>113.19 (20.52)</td>
<td>114.86 (32.42)</td>
</tr>
<tr>
<td></td>
<td>CKD No</td>
<td>94 (82%)</td>
<td>64 (83%)</td>
<td>30 (79%)</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>CKD Yes</td>
<td>21 (18%)</td>
<td>13 (17%)</td>
<td>8 (21%)</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Hypertension No</td>
<td>109 (84%)</td>
<td>71 (82%)</td>
<td>38 (88%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypertension Yes</td>
<td>21 (16%)</td>
<td>16 (18%)</td>
<td>5 (12%)</td>
<td></td>
</tr>
</tbody>
</table>

†Kidney injury defined as elevated biomarkers measured on day 1 0-6 hours. Elevated biomarkers defined as values higher than the 5th quintile in the TRIBE in-hospital cohort; Urine IL-18>362 pg/mL, Urine NGAL>70 ng/mL, Plasma NGAL>259 ng/mL, Urine KIM-1>0.39 ng/mL, Urine L-FABP>399 ng/mL. Results are presented as mean (SD) [p25, median, p75].