Supplementary Online Content

eFigure 1. Threshold for Study Entry Is Related to Gene Size

eFigure 2. Corticotropin-Releasing Hormone Signaling

eFigure 3. Cardiac β-Adrenergic Signaling

eFigure 4. Phospholipase C Signaling

eFigure 5. Glutamate Receptor Signaling

eFigure 6. Endothelin 1 Signaling

eFigure 7. Cardiac Hypertrophy Signaling

eTable. Characteristics of 25 Genes Included in Simulation to Determine the Relationship Between Gene Size and Empirical P Value

eBox. Summary of Steps in Pathway Analysis

eAppendix. Psychiatric Genomics Consortium Bipolar Group Members and Affiliations

This supplementary material has been provided by the authors to give readers additional information about their work.
eFigure 1. Threshold for Study Entry Is Related to Gene Size

A

Required # SNPs <0.05 to satisfy a global 5% error rate

B

required # SNPs to satisfy 5% error rates

eFigure 1A shows the derivation of a regression equation to determine the empirical p value threshold for each gene entered into the pathway analysis. Four GWAS studies were simulated using 10,000 SNPs.
replications per study and permuting case and control status. The number of times that SNPs from a particular gene were found to reach a nominal p value of ≤.05 in 3 out of 4 GWAS datasets was found to be directly related to the maximum number of SNPs tested in that gene in any GWAS (an indirect measure of gene size). The relationship between maximum number of SNPs tested in a gene and the number of SNPs at nominal p ≤.05 necessary to achieve an empirical p ≤.05 is given by the regression line. eFigure 1B provides an expansion of that relationship to more precisely define the threshold for smaller genes.
eFigures 2-7. These figures show the Canonical Pathway Diagrams for each of the selected pathways, as designated in Ingenuity Systems. The shaded molecules in each diagram indicate the specific genes, or gene-families, tagged by genes in the list of 226 in the Box of the present report.

eFigure 2. Corticotropin-Releasing Hormone Signaling

![Corticotropin-Releasing Hormone Signaling Diagram](image-url)
eFigure 3. Cardiac β-Adrenergic Signaling

Cardiac β-adrenergic Signaling
eFigure 4. Phospholipase C Signaling
eFigure 5. Glutamate Receptor Signaling
eFigure 6. Endothelin 1 Signaling
eFigure 7. Cardiac Hypertrophy Signaling
eTable. Characteristics of 25 Genes Included in Simulation to Determine the Relationship Between Gene Size and Empirical P Value

<table>
<thead>
<tr>
<th>Gene</th>
<th>GAIN</th>
<th>STEP</th>
<th>Wellcome</th>
<th>German</th>
<th>GENE_SIZE(bp)</th>
<th>mean # of SNPs among 4 GWAS</th>
<th>Maximum # of SNPs among 4 GWAS</th>
<th>the required # of SNPs <0.05 for a global 5% FPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2BP1</td>
<td>1049</td>
<td>544</td>
<td>614</td>
<td>856</td>
<td>1,694,208</td>
<td>766</td>
<td>1049</td>
<td>45</td>
</tr>
<tr>
<td>ADCY2</td>
<td>131</td>
<td>74</td>
<td>82</td>
<td>116</td>
<td>433,851</td>
<td>101</td>
<td>131</td>
<td>7</td>
</tr>
<tr>
<td>CNTNAP2</td>
<td>696</td>
<td>372</td>
<td>438</td>
<td>558</td>
<td>2,304,637</td>
<td>516</td>
<td>696</td>
<td>34</td>
</tr>
<tr>
<td>CSMD1</td>
<td>1420</td>
<td>685</td>
<td>793</td>
<td>1597</td>
<td>2,059,453</td>
<td>1124</td>
<td>1597</td>
<td>62</td>
</tr>
<tr>
<td>DLG2</td>
<td>383</td>
<td>206</td>
<td>233</td>
<td>366</td>
<td>2,172,259</td>
<td>297</td>
<td>383</td>
<td>21</td>
</tr>
<tr>
<td>GRM7</td>
<td>334</td>
<td>182</td>
<td>210</td>
<td>300</td>
<td>880,416</td>
<td>257</td>
<td>334</td>
<td>17</td>
</tr>
<tr>
<td>KCNMA1</td>
<td>310</td>
<td>178</td>
<td>203</td>
<td>217</td>
<td>768,218</td>
<td>227</td>
<td>310</td>
<td>16</td>
</tr>
<tr>
<td>NPAS3</td>
<td>431</td>
<td>209</td>
<td>235</td>
<td>370</td>
<td>864,923</td>
<td>311</td>
<td>431</td>
<td>19</td>
</tr>
<tr>
<td>OPCML</td>
<td>415</td>
<td>192</td>
<td>222</td>
<td>413</td>
<td>1,117,528</td>
<td>311</td>
<td>415</td>
<td>19</td>
</tr>
<tr>
<td>PARK2</td>
<td>490</td>
<td>247</td>
<td>283</td>
<td>456</td>
<td>1,380,244</td>
<td>369</td>
<td>490</td>
<td>24</td>
</tr>
<tr>
<td>PTPRG</td>
<td>268</td>
<td>137</td>
<td>170</td>
<td>236</td>
<td>733,330</td>
<td>203</td>
<td>268</td>
<td>14</td>
</tr>
<tr>
<td>SLIT3</td>
<td>297</td>
<td>160</td>
<td>177</td>
<td>267</td>
<td>635,062</td>
<td>225</td>
<td>297</td>
<td>15</td>
</tr>
<tr>
<td>CDK6</td>
<td>49</td>
<td>25</td>
<td>33</td>
<td>42</td>
<td>231,706</td>
<td>37</td>
<td>49</td>
<td>3.5</td>
</tr>
<tr>
<td>DDEF2/ASAP2</td>
<td>48</td>
<td>26</td>
<td>38</td>
<td>31</td>
<td>198,918</td>
<td>36</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>FER1L3/MYOF</td>
<td>67</td>
<td>33</td>
<td>59</td>
<td>63</td>
<td>175,888</td>
<td>56</td>
<td>67</td>
<td>5</td>
</tr>
<tr>
<td>TP53I11</td>
<td>35</td>
<td>20</td>
<td>26</td>
<td>33</td>
<td>18,709</td>
<td>29</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>C15ORF53</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>3,440</td>
<td>10</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>CHST8</td>
<td>49</td>
<td>33</td>
<td>38</td>
<td>46</td>
<td>151,553</td>
<td>42</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>FBN2</td>
<td>77</td>
<td>43</td>
<td>53</td>
<td>71</td>
<td>280,134</td>
<td>61</td>
<td>77</td>
<td>5</td>
</tr>
<tr>
<td>LGMN</td>
<td>18</td>
<td>7</td>
<td>9</td>
<td>18</td>
<td>44,895</td>
<td>13</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>MYLK4</td>
<td>63</td>
<td>38</td>
<td>38</td>
<td>56</td>
<td>87,291</td>
<td>49</td>
<td>63</td>
<td>6</td>
</tr>
<tr>
<td>NCAM1</td>
<td>145</td>
<td>94</td>
<td>103</td>
<td>93</td>
<td>317,163</td>
<td>109</td>
<td>145</td>
<td>8</td>
</tr>
<tr>
<td>NTNG1</td>
<td>113</td>
<td>55</td>
<td>80</td>
<td>81</td>
<td>341,846</td>
<td>82</td>
<td>113</td>
<td>6</td>
</tr>
<tr>
<td>PLA2R1</td>
<td>57</td>
<td>38</td>
<td>47</td>
<td>45</td>
<td>121,109</td>
<td>47</td>
<td>57</td>
<td>4</td>
</tr>
<tr>
<td>PRKCB</td>
<td>126</td>
<td>69</td>
<td>88</td>
<td>97</td>
<td>384,632</td>
<td>95</td>
<td>126</td>
<td>8</td>
</tr>
</tbody>
</table>
eBox. Summary of Steps in Pathway Analysis

1) We derived a list of 966 genes with 2 SNPs at $p < 0.05$ in 3 out of four GWAS datasets ($N = 5253$ cases and 6874 controls).

2) We used 10,000 permutations of phenotype in the four GWAS datasets in order to extract 226 genes from the 966 that were each empirically significant at $p < 0.05$.

3) We ran the 226 genes through an Ingenuity pathway analysis and obtained 16 pathways.

4) We ran the 16 pathways in a separate GWAS dataset (PGC2, an independent set of several thousand cases and controls). 6/16 pathways showed $p < 0.05$ and FDR< 0.05.

5) We compared gene-level results from a multicenter gene expression analysis ($N = 919$ genes) with the gene-level results from our own analysis ($N = 226$ genes), observing an overlap of 9 genes, three of which were among the genes driving the pathway results (chi-square $p < 0.005$).
Pamela Sklar, MD, PhD1,2; Stephan Ripke, MD3,4; Laura J. Scott, PhD5; Ole A. Andreassen, MD, PhD6,7; Sven Cichon, PhD8,9; Nick Craddock, PhD10; Howard J. Edenberg, PhD11; John I. Nurnberger Jr, MD, PhD12,13,14; Marcella Rietjeschel, MD15; Douglas Blackwood, MD, PhD16,17,18; Aiden Corvin, MD, PhD19; Matthew Flickinger, MS5; Weihsuan Guan, PhD20; Morten Mattingsdal, PhD21; Andrew McQuillin, PhD22; Phoenix Kwan, MS23; Thomas F. Wienker, MD24; Mark Daly, PhD25,4; Frank Dudbridge, PhD26; Peter A. Holmans, PhD27,28; Danyu Lin, PhD29; Margit Burmeister, PhD30; Tiffany A. Greenwood, PhD31; Mariam L. Hamshere, PhD32,33; PIER Andrea Murugia, MD34; Erin N. Smith, PhD35; Peter P. Zandi, PhD36; Caroline M. Nievergelt, PhD37; Rebecca McKinney, BA38; Paul D. Shilling, PhD39; Nicholas J. Schork, PhD40; Cinnamon S. Bloss, PhD41; Tatiana Foroud, PhD42; Daniel L. Koller, PhD43; Elliot S. Gershon, MD44; Chunyu Liu, PhD45; Judith A. Badner, MD, PhD46; William A. Scheftner, MD47; William B. Lawson, MD, PhD48; Evaristi A. Nwulia, MD49; Maria Hipolito, MD50; William Coryell, MD51; John Rice, PhD52; William Byerley, MD53; Francis J. McMahon, MD54; Thomas G. Schulze, MD55,56,57; Wade Berrettini, MD, PhD58; Falk W. Lohoff, MD59; James B. Potash, MD60; Pamela B. Mahon, PhD61; Melvin G. McInnis, MD62; Sebastian Zöllner, MD63,64; Peng Zhang, PhD65,66; David W. Craig, PhD67; Szabolcs Szelinger, MD68; Thomas B. Barrett, MD69; René Breuer70; Sandra Meier71; Jana Strohmaier, PhD72; Stephanie H. Witt, PhD73; Federica Tozzi, MD74; Anne Farmer, MD75; Peter McQuillin, MD76; John Strauss, MD77; Wei Xu78; James L. Kennedy, MD79; John B. Vincent, PhD80; Keith Matthews, MD81; Richard Day, MD82; Manuel A. Ferreira, PhD83,84; Colm O’Dushlaine, PhD85,86; Roy Perlis, MD87; Soumya Raychaudhuri, MD, PhD88,89; Douglas Ruderfer, PhD90; Phil H. Lee, PhD91; Jordan W. Smoller, MD92,93; Jun Li, PhD94; Devin Absher, PhD95; William E. Bunney, MD96; Jack D. Barchas, MD97; Alan F. Schatzberg, MD98; Edward G. Jones, MD99; Fan Meng, PhD100; Robert C. Thompson, PhD101; Stanley J. Watson, MD102; Richard M. Myers, MD103; Huda Akil, PhD104; Michael Boehnke, PhD105; Kimberly Chambert, MSc106; Jennifer L. Moran, PhD107; Edward M. Scollnick, MD108; Srdjan Djurovic, PhD109,110; Ingrid Melle, MD, PhD111; Gunnar Morken, MD, PhD112,113; Michael Gill, MD114; Derek Morris, PhD115; Emma Quinn, MSc116; Thomas W. Mühlheissen117,118; Franziska A. Degenhardt, PhD119,120; Manuel Mattheisen, MD, PhD121,122; Johannes Schumacher123; Wolfgang Maier, MD124; Michael Steffens, PhD125; Peter Propping, MD, PhD126; Markus M. Nöthen, MD127; Abebayo Anjorin, MBCB, MSc, MRCpsych128; Nick Bass, MD, MRCpsych129; Hugh Gurling, MD, FRCPsych130; Radhika Kandaswamy, PhDD131; Jacob Lawrence, MBBS, MRCpsych132; Hugh Gurling, MD, FRCPsych133; Andrew McQuillin, MD134; Alan W. McLean, PhD135; Walter J. Muri, DSc136,137; Benjamin S. Pickard, PhD138,139; Gereon Brem, MSc140,141; David St. Clair, MD142; Sian Caesar143; Katherine Gordon-Smith, PhD144,145; Lisa Jones, PhD, MBPsS146; Christine Fraser147; Elaine K. Green, PhD148; Detelina Grozeva, MSc149; Ian R. Jones, MRCpsych, PhD150; George Kirov, PhD151; Valentina Moskvina152; Ivan Nikolov, MD153; Michael C. O'Donovan, PhD, FRCpsych154; Michael J. Owen, PhD155; David A. Collier, PhD156; Amanda Elkin157; Richard Williamson158; Allan H. Young, MD159,160; I. Nicol Ferrier, MD161; Kari Stefansson, MD162; Hreinn Stefansson, PhD163; Porgeir E. Porgeirsson, PhD164; Stacy Steinberg165; Omar Gustafsson, PhD166; Sarah E. Bergen, PhD167,168; Vishwajit Nimgaonkar, MD, PhD169; Christina Hultman, PhD170; Mikael Landén, MD, PhD171,172; Paul Lichtenstein, PhD173; Patrick F. Sullivan, MD174,175; Martin Schalling, MD, PhD176; Urban Osby, MD, PhD177; Lena Backlund, MD, PhD178; Louise Frisén, MD, PhD179; Niklas Langstrom, MD180; Stéphane Jamain, PhD181,182; Marion Leboyer, MD183,184; Bruno Etaín, MD, PhD185,186; Frank Bellivier, MD, PhD187,188; Hannes Petursson, PhD189; Engilbert Sigurdsson, MD, PhD190; Bertram Müller-Moyso, MD, PhD191; Susanne Lucae, MD, PhD192; Markus Schwarz, MD193; Janice M. Fullerton, PhD194,195; Peter R. Schofield, MD196,197; Nick Martin, PhD198; Grant W. Montgomery, PhD199; Mark Lathrop, PhD200; Högni Óskarsson, MD201; Michael Bauer, MD, PhD202; Adam Wright203; Philip B. Mitchell, MB, BS, MD204; Martin Hautzinger, PhD205; Andreas Reif, MD206; John R. Kelsoe, MD207,208; Shaun M. Purcell, PhD209,210
Molecular Neuropsychiatry and Development Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, Canada
Psychiatric Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
Division of Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
QIMR Berghofer Medical Research Institute, Brisbane, Australia
Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
Department of Psychiatry, Weill Medical College, Cornell University, New York, New York
Psychiatry and Behavioral Science, Stanford University School of Medicine, Palo Alto, California
Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, California
Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
Department of Psychiatry, St Olav's Hospital, Trondheim, Norway
Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
Department of Biomedicine, Aarhus University, Aarhus, Denmark
The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
Department of Psychiatry, University of Bonn, Bonn, Germany
University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
Department of Psychiatry, School of Clinical and Experimental Medicine, Birmingham University, Birmingham, UK
University of British Columbia Institute of Mental Health, Vancouver, British Columbia, Canada
decODE genetics, Reykjavík, Iceland
Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
INSERM, U955, Psychiatrie Génétique, Créteil, France
Université Paris Est, Faculté de Médecine, Créteil, France
Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital H. Mondor–A. Chenevier, Département de Psychiatrie, Créteil, France
ENBREC Group, Fondation FondaMental, Créteil, France
Division of Psychiatry, Landspitali University Hospital, University of Iceland, Reykjavík, Iceland
Max Planck Institute of Psychiatry, Munich, Germany
Psychiatric Center Nordbaden, Wiesloch, Germany
Neuroscience Research Australia, Sydney, Australia
University of New South Wales, Sydney, Australia
Centre National de Génomique, Evry, France
Therapeia, Reykjavík, Iceland
Department of Psychiatry and Psychotherapy, ENBREC Group, University Hospital Carl Gustav Carus, Dresden, Germany
School of Psychiatry, University of New South Wales and Black Dog Institute, Sydney, New South Wales, Australia
Department of Clinical and Developmental Psychology, Institute of Psychology, University of Tübingen, Tübingen, Germany
Department of Psychiatry, University of Würzburg, Würzburg, Germany
Department of Psychiatry, Special Treatment and Evaluation Program (STEP), Veterans Affairs San Diego Healthcare System, San Diego, California

© 2013 American Medical Association. All rights reserved.